Suppr超能文献

合成磁共振成像的应用:一种新的增强策略框架,用于稳健的多模态脑肿瘤分割。

Synthetic MRI in action: A novel framework in data augmentation strategies for robust multi-modal brain tumor segmentation.

机构信息

Dept. of Computer Science & IT, Jaypee Institute of Information Technology, India.

出版信息

Comput Biol Med. 2024 Dec;183:109273. doi: 10.1016/j.compbiomed.2024.109273. Epub 2024 Oct 23.

Abstract

Brain tumor diagnostics rely heavily on Magnetic Resonance Imaging (MRI) for accurate diagnosis and treatment planning due to its non-invasive nature and detailed soft tissue visualization. Integrating multiple MRI modalities enhances diagnostic precision by providing complementary perspectives on tumor characteristics and spatial relationships. However, acquiring specific modalities like T1 Contrast Enhanced (T1CE) can be challenging, as they require contrast agents and longer scan times, which can cause discomfort, particularly in vulnerable patient groups such as the elderly, pregnant women, and infants. In the medical imaging domain, researchers face significant challenges in developing robust models due to data scarcity and data sparsity. Data scarcity, arising from limited access to diverse datasets, complex annotation processes, privacy concerns, and the difficulty of acquiring certain modalities in some patient groups, impedes the development of comprehensive brain tumor segmentation models. Data sparsity, driven by the highly imbalanced distribution between tumor subregions and background levels in annotated labels, complicates accurate segmentation. The study addresses these challenges by generating synthetic T1CE scans from T1 using an image-to-image translation framework, thereby reducing the reliance on hard-to-acquire modalities. A novel patch-based data sampling approach, Adaptive Random Patch Selection (ARPS), is introduced to combat data sparsity, ensuring detailed segmentation of intricate tumor structures while maintaining context through overlapping patches and context-aware sampling strategies. The impact of these synthetic images on segmentation performance is also assessed, emphasizing their role in addressing situations where certain modalities cannot be acquired. When integrated into the nnUNet model, this approach achieves a dice similarity coefficient (DSC) of 86.47, demonstrating its efficacy in handling complex MRI scans of brain tumors. An ablation study is also conducted to assess the individual contributions of the translated images and the proposed data sampling approach. This comprehensive evaluation allows us to understand the effectiveness of ARPS and the potential synergy between multi-modal translation and brain tumor segmentation.

摘要

脑肿瘤的诊断在很大程度上依赖于磁共振成像(MRI),因为它具有非侵入性和对软组织的详细可视化。整合多种 MRI 模态可以通过提供肿瘤特征和空间关系的互补视角来提高诊断精度。然而,获取特定的模态,如 T1 对比增强(T1CE),可能具有挑战性,因为它们需要造影剂和更长的扫描时间,这可能会引起不适,尤其是在脆弱的患者群体中,如老年人、孕妇和婴儿。在医学成像领域,由于数据稀缺和数据稀疏,研究人员在开发强大的模型方面面临着重大挑战。数据稀缺性源于访问多样化数据集的受限、复杂的注释过程、隐私问题以及在某些患者群体中获取某些模态的困难,这阻碍了全面脑肿瘤分割模型的发展。数据稀疏性源于注释标签中肿瘤亚区和背景水平之间的高度不平衡分布,这使得准确分割变得复杂。该研究通过使用图像到图像的翻译框架从 T1 生成合成 T1CE 扫描,从而减少对难以获取的模态的依赖,来解决这些挑战。引入了一种新的基于补丁的数据采样方法——自适应随机补丁选择(ARPS),以克服数据稀疏性,通过重叠补丁和上下文感知采样策略,确保对复杂肿瘤结构进行详细分割,并保持上下文信息。还评估了这些合成图像对分割性能的影响,强调了它们在处理某些模态无法获取的情况时的作用。当将该方法集成到 nnUNet 模型中时,该方法实现了 86.47 的骰子相似系数(DSC),证明了它在处理脑肿瘤复杂 MRI 扫描方面的有效性。还进行了消融研究,以评估翻译图像和所提出的数据采样方法的个体贡献。这种综合评估使我们能够了解 ARPS 的有效性以及多模态翻译和脑肿瘤分割之间的潜在协同作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验