Suppr超能文献

基于 Transformer 的跨模态肿瘤分割的图像级监督和自训练。

Image-level supervision and self-training for transformer-based cross-modality tumor segmentation.

机构信息

Polytechnique Montreal, Montreal, QC, Canada.

Polytechnique Montreal, Montreal, QC, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada.

出版信息

Med Image Anal. 2024 Oct;97:103287. doi: 10.1016/j.media.2024.103287. Epub 2024 Jul 31.

Abstract

Deep neural networks are commonly used for automated medical image segmentation, but models will frequently struggle to generalize well across different imaging modalities. This issue is particularly problematic due to the limited availability of annotated data, both in the target as well as the source modality, making it difficult to deploy these models on a larger scale. To overcome these challenges, we propose a new semi-supervised training strategy called MoDATTS. Our approach is designed for accurate cross-modality 3D tumor segmentation on unpaired bi-modal datasets. An image-to-image translation strategy between modalities is used to produce synthetic but annotated images and labels in the desired modality and improve generalization to the unannotated target modality. We also use powerful vision transformer architectures for both image translation (TransUNet) and segmentation (Medformer) tasks and introduce an iterative self-training procedure in the later task to further close the domain gap between modalities, thus also training on unlabeled images in the target modality. MoDATTS additionally allows the possibility to exploit image-level labels with a semi-supervised objective that encourages the model to disentangle tumors from the background. This semi-supervised methodology helps in particular to maintain downstream segmentation performance when pixel-level label scarcity is also present in the source modality dataset, or when the source dataset contains healthy controls. The proposed model achieves superior performance compared to other methods from participating teams in the CrossMoDA 2022 vestibular schwannoma (VS) segmentation challenge, as evidenced by its reported top Dice score of 0.87±0.04 for the VS segmentation. MoDATTS also yields consistent improvements in Dice scores over baselines on a cross-modality adult brain gliomas segmentation task composed of four different contrasts from the BraTS 2020 challenge dataset, where 95% of a target supervised model performance is reached when no target modality annotations are available. We report that 99% and 100% of this maximum performance can be attained if 20% and 50% of the target data is additionally annotated, which further demonstrates that MoDATTS can be leveraged to reduce the annotation burden.

摘要

深度神经网络常用于医学图像的自动分割,但模型在不同成像模态之间通常难以很好地泛化。由于目标模态和源模态中注释数据的有限可用性,使得这些模型难以大规模部署,这一问题尤其严重。为了克服这些挑战,我们提出了一种新的半监督训练策略,称为 MoDATTS。我们的方法旨在对未配对的双模态数据集进行准确的跨模态 3D 肿瘤分割。我们使用模态间的图像到图像转换策略来生成合成但带有注释的图像和标签,并改善对未注释目标模态的泛化能力。我们还在图像翻译(TransUNet)和分割(Medformer)任务中使用强大的视觉转换器架构,并在后期任务中引入迭代自训练过程,进一步缩小模态间的域差距,从而也在目标模态的未标记图像上进行训练。MoDATTS 还允许利用半监督目标来利用图像级标签的可能性,该目标鼓励模型从背景中分离肿瘤。这种半监督方法有助于在源模态数据集存在像素级标签稀缺或源数据集包含健康对照的情况下,特别是在下游分割性能保持时发挥作用。与参与 2022 年 CrossMoDA 前庭神经鞘瘤(VS)分割挑战赛的其他团队的方法相比,所提出的模型在 VS 分割方面实现了卓越的性能,其报告的 VS 分割的最高 Dice 分数为 0.87±0.04。MoDATTS 还在由 BraTS 2020 挑战赛数据集的四个不同对比度组成的跨模态成人脑胶质瘤分割任务中,在基线水平上实现了一致的 Dice 分数提高,当没有目标模态注释时,达到了目标监督模型性能的 95%。我们报告,如果额外注释目标数据的 20%和 50%,可以达到 99%和 100%的最大性能,这进一步表明 MoDATTS 可以被利用来减少注释负担。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验