通过基因表达和调控网络分析深入研究糖尿病与缺血性中风之间复杂的病理生理机制。
In-depth investigation of the complex pathophysiological mechanisms between diabetes and ischemic stroke through gene expression and regulatory network analysis.
作者信息
Lin Ling, Zhang Yuanxin, Zeng Fengshan, Zhu Chanyan, Guo Chunmao, Huang Haixiong, Jin Hanna, He Huahua, Chen Shaolan, Zhou Jinyan, Chen Yao, Xu Yuqian, Li Dongqi, Yu Wenlin
机构信息
Huizhou Hospital of Guangzhou University of Chinese Medicine (Huizhou Hospital of Traditional Chinese Medicine), Huizhou, Guangdong 516001, China.
Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
出版信息
Brain Res. 2024 Dec 15;1845:149276. doi: 10.1016/j.brainres.2024.149276. Epub 2024 Oct 22.
This study explores the intricate relationship between diabetes and ischemic stroke (IS) through gene expression analysis and regulatory network investigation to identify potential biomarkers and therapeutic targets. Using datasets from the Gene Expression Omnibus (GEO) database, differential gene analysis was conducted on GSE43950 (diabetes) and GSE16561 (IS), revealing overlapping differentially expressed genes (DEGs). Functional enrichment analysis, Protein-Protein Interaction (PPI) network construction, and hub gene identification were performed, followed by validation in independent datasets (GSE156035 and GSE58294). The analysis identified 307 upregulated and 156 downregulated overlapping DEGs with significant enrichment in GO and KEGG pathways. Key hub genes (TLR2, TLR4, HDAC1, ITGAM) were identified through a PPI network (257 nodes, 456 interactions), with their roles in immune and inflammatory responses highlighted through GeneMANIA analysis. TRRUST-based transcription factor enrichment analysis revealed regulatory links involving RELA, SPI1, STAT3, and SP1. Differential expression analysis confirmed that RELA and SPI1 were upregulated in diabetes, while SPI1, STAT3, and SP1 were linked to IS. These transcription factors are involved in regulating immunity and inflammation, providing insights into the molecular mechanisms underlying diabetes-IS comorbidity. This bioinformatics-driven approach offers new understanding of the gene interactions and pathways involved, paving the way for potential therapeutic targets.
本研究通过基因表达分析和调控网络研究,探索糖尿病与缺血性中风(IS)之间的复杂关系,以确定潜在的生物标志物和治疗靶点。利用来自基因表达综合数据库(GEO)的数据集,对GSE43950(糖尿病)和GSE16561(IS)进行差异基因分析,揭示重叠的差异表达基因(DEGs)。进行功能富集分析、蛋白质-蛋白质相互作用(PPI)网络构建和枢纽基因鉴定,随后在独立数据集(GSE156035和GSE58294)中进行验证。分析确定了307个上调和156个下调的重叠DEGs,在GO和KEGG通路中显著富集。通过PPI网络(257个节点,456个相互作用)确定了关键枢纽基因(TLR2、TLR4、HDAC1、ITGAM),通过GeneMANIA分析突出了它们在免疫和炎症反应中的作用。基于TRRUST的转录因子富集分析揭示了涉及RELA、SPI1、STAT3和SP1的调控联系。差异表达分析证实,RELA和SPI1在糖尿病中上调,而SPI1、STAT3和SP1与IS相关。这些转录因子参与调节免疫和炎症,为糖尿病-IS共病的分子机制提供了见解。这种生物信息学驱动的方法为所涉及的基因相互作用和途径提供了新的理解,为潜在的治疗靶点铺平了道路。