Hsieh Ching-Yi, Lai Ying-Chieh, Lu Kuan-Ying, Lin Gigin
Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
Biomed J. 2024 Oct 21;48(3):100802. doi: 10.1016/j.bj.2024.100802.
Hyperpolarized (HP) magnetic resonance imaging (MRI) is a groundbreaking imaging platform advancing from research to clinical practice, offering new possibilities for real-time, non-invasive metabolic imaging. This review explores the latest advancements, challenges, and future directions of HP MRI, emphasizing its transformative impact on both translational research and clinical applications. By employing techniques such as dissolution Dynamic Nuclear Polarization (dDNP), Parahydrogen-Induced Polarization (PHIP), Signal Amplification by Reversible Exchange (SABRE), and Spin-Exchange Optical Pumping (SEOP), HP MRI achieves enhanced nuclear spin polarization, enabling in vivo visualization of metabolic pathways with exceptional sensitivity. Current challenges, such as limited imaging windows, complex pre-scan protocols, and data processing difficulties, are addressed through innovative solutions like advanced pulse sequences, bolus tracking, and kinetic modeling. We highlight the evolution of HP MRI technology, focusing on its potential to revolutionize disease diagnosis and monitoring by revealing metabolic processes beyond the reach of conventional MRI and positron emission tomography (PET). Key advancements include the development of novel tracers like [2-C]pyruvate and [1-C]-alpha-ketoglutarate and improved data analysis techniques, broadening the scope of clinical metabolic imaging. Future prospects emphasize integrating artificial intelligence, standardizing imaging protocols, and developing new hyperpolarized agents to enhance reproducibility and expand clinical capabilities particularly in oncology, cardiology, and neurology. Ultimately, we envisioned HP MRI as a standardized modality for dynamic metabolic imaging in clinical practice.
超极化(HP)磁共振成像(MRI)是一个从研究迈向临床实践的开创性成像平台,为实时、非侵入性代谢成像提供了新的可能性。本综述探讨了HP MRI的最新进展、挑战和未来方向,强调了其对转化研究和临床应用的变革性影响。通过采用诸如溶解动态核极化(dDNP)、仲氢诱导极化(PHIP)、可逆交换信号放大(SABRE)和自旋交换光泵浦(SEOP)等技术,HP MRI实现了增强的核自旋极化,能够以极高的灵敏度在体内可视化代谢途径。当前的挑战,如成像窗口有限、复杂的预扫描协议和数据处理困难等,通过先进脉冲序列、团注追踪和动力学建模等创新解决方案得以解决。我们重点介绍了HP MRI技术的发展,关注其通过揭示传统MRI和正电子发射断层扫描(PET)无法触及的代谢过程来彻底改变疾病诊断和监测的潜力。关键进展包括新型示踪剂如[2-C]丙酮酸和[1-C]-α-酮戊二酸的开发以及改进的数据分析技术,拓宽了临床代谢成像的范围。未来前景强调整合人工智能、标准化成像协议以及开发新的超极化剂,以提高可重复性并扩展临床能力,特别是在肿瘤学、心脏病学和神经病学领域。最终,我们设想HP MRI成为临床实践中动态代谢成像的标准化模式。
Curr Cancer Drug Targets. 2025-6-30
Arch Ital Urol Androl. 2025-6-30
Cochrane Database Syst Rev. 2018-1-22
Int J Nanomedicine. 2022
Cochrane Database Syst Rev. 2016-2-26
Clin Med Insights Cardiol. 2025-8-29
Biomed J. 2025-5-17
Angew Chem Int Ed Engl. 2025-4-23
Magn Reson Med. 2024-6