文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

sChemNET:一种用于预测靶向 microRNA 功能的小分子的深度学习框架。

sChemNET: a deep learning framework for predicting small molecules targeting microRNA function.

机构信息

Department of Electronics and Mechatronics Engineering, Facultad de Ingeniería, Universidad Nacional de Asunción - FIUNA, Luque, Paraguay.

COVID-19 International Research Team, Medford, MA, USA.

出版信息

Nat Commun. 2024 Oct 23;15(1):9149. doi: 10.1038/s41467-024-49813-w.


DOI:10.1038/s41467-024-49813-w
PMID:39443444
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11500171/
Abstract

MicroRNAs (miRNAs) have been implicated in human disorders, from cancers to infectious diseases. Targeting miRNAs or their target genes with small molecules offers opportunities to modulate dysregulated cellular processes linked to diseases. Yet, predicting small molecules associated with miRNAs remains challenging due to the small size of small molecule-miRNA datasets. Herein, we develop a generalized deep learning framework, sChemNET, for predicting small molecules affecting miRNA bioactivity based on chemical structure and sequence information. sChemNET overcomes the limitation of sparse chemical information by an objective function that allows the neural network to learn chemical space from a large body of chemical structures yet unknown to affect miRNAs. We experimentally validated small molecules predicted to act on miR-451 or its targets and tested their role in erythrocyte maturation during zebrafish embryogenesis. We also tested small molecules targeting the miR-181 network and other miRNAs using in-vitro and in-vivo experiments. We demonstrate that our machine-learning framework can predict bioactive small molecules targeting miRNAs or their targets in humans and other mammalian organisms.

摘要

微小 RNA(miRNAs)与人类疾病有关,从癌症到传染病。用小分子靶向 miRNAs 或其靶基因为调节与疾病相关的失调细胞过程提供了机会。然而,由于小分子-miRNA 数据集较小,预测与 miRNAs 相关的小分子仍然具有挑战性。在此,我们开发了一种通用的深度学习框架 sChemNET,用于基于化学结构和序列信息预测影响 miRNA 生物活性的小分子。sChemNET 通过一个目标函数克服了化学信息稀疏的限制,该目标函数允许神经网络从大量尚未已知影响 miRNAs 的化学结构中学习化学空间。我们实验验证了预测作用于 miR-451 或其靶标的小分子,并测试了它们在斑马鱼胚胎发生过程中对红细胞成熟的作用。我们还使用体外和体内实验测试了靶向 miR-181 网络和其他 miRNAs 的小分子。我们证明我们的机器学习框架可以预测靶向人类和其他哺乳动物 miRNA 或其靶标的生物活性小分子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061d/11500171/baffb20881cb/41467_2024_49813_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061d/11500171/acd89f05a1c3/41467_2024_49813_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061d/11500171/f201305748d9/41467_2024_49813_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061d/11500171/530955754ebb/41467_2024_49813_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061d/11500171/eb4a902b386b/41467_2024_49813_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061d/11500171/b3d9e4d678a2/41467_2024_49813_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061d/11500171/baffb20881cb/41467_2024_49813_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061d/11500171/acd89f05a1c3/41467_2024_49813_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061d/11500171/f201305748d9/41467_2024_49813_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061d/11500171/530955754ebb/41467_2024_49813_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061d/11500171/eb4a902b386b/41467_2024_49813_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061d/11500171/b3d9e4d678a2/41467_2024_49813_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/061d/11500171/baffb20881cb/41467_2024_49813_Fig6_HTML.jpg

相似文献

[1]
sChemNET: a deep learning framework for predicting small molecules targeting microRNA function.

Nat Commun. 2024-10-23

[2]
Graph neural networks for the identification of novel inhibitors of a small RNA.

SLAS Discov. 2023-12

[3]
Small molecule chemical probes of microRNA function.

Curr Opin Chem Biol. 2015-2

[4]
MDFGNN-SMMA: prediction of potential small molecule-miRNA associations based on multi-source data fusion and graph neural networks.

BMC Bioinformatics. 2025-1-13

[5]
A structure-specific small molecule inhibits a miRNA-200 family member precursor and reverses a type 2 diabetes phenotype.

Cell Chem Biol. 2022-2-17

[6]
miRAW: A deep learning-based approach to predict microRNA targets by analyzing whole microRNA transcripts.

PLoS Comput Biol. 2018-7-13

[7]
microRNAs in Cardiovascular Disease: Small Molecules but Big Roles.

Curr Top Med Chem. 2019

[8]
DeepsmirUD: Prediction of Regulatory Effects on microRNA Expression Mediated by Small Molecules Using Deep Learning.

Int J Mol Sci. 2023-1-18

[9]
Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks.

Int J Mol Sci. 2019-7-25

[10]
Targeting the production of oncogenic microRNAs with multimodal synthetic small molecules.

ACS Chem Biol. 2014-1-3

引用本文的文献

[1]
: regulatory roles, cancer-associated signaling pathway disruptions, and therapeutic potential.

Expert Opin Ther Targets. 2024-12

本文引用的文献

[1]
β-elemene Suppresses Migration of Esophageal Squamous Cell Carcinoma by Modulating Expression of MMP9 through the PI3K/Akt/NF-κB Pathway.

Comb Chem High Throughput Screen. 2023

[2]
1α,25-dihydroxyvitamin D reduction of MCF10A-ras cell viability in extracellular matrix detached conditions is dependent on regulation of pyruvate carboxylase.

J Nutr Biochem. 2022-11

[3]
Vitamin D boosts immune response of macrophages through a regulatory network of microRNAs and mRNAs.

J Nutr Biochem. 2022-11

[4]
The Role of MiR-181 Family Members in Endothelial Cell Dysfunction and Tumor Angiogenesis.

Cells. 2022-5-18

[5]
Adverse Drug Reactions and Toxicity of the Food and Drug Administration-Approved Antisense Oligonucleotide Drugs.

Drug Metab Dispos. 2022-6

[6]
NAFLD and vitamin D: Evidence for intersection of microRNA-regulated pathways.

Nutr Res Rev. 2023-6

[7]
MiR-181a-5p facilitates proliferation, invasion, and glycolysis of breast cancer through NDRG2-mediated activation of PTEN/AKT pathway.

Bioengineered. 2022-1

[8]
Machine learning and network medicine approaches for drug repositioning for COVID-19.

Patterns (N Y). 2022-1-14

[9]
RNAInter v4.0: RNA interactome repository with redefined confidence scoring system and improved accessibility.

Nucleic Acids Res. 2022-1-7

[10]
Role of miR-2392 in driving SARS-CoV-2 infection.

Cell Rep. 2021-10-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索