Department of Electronics and Mechatronics Engineering, Facultad de Ingeniería, Universidad Nacional de Asunción - FIUNA, Luque, Paraguay.
COVID-19 International Research Team, Medford, MA, USA.
Nat Commun. 2024 Oct 23;15(1):9149. doi: 10.1038/s41467-024-49813-w.
MicroRNAs (miRNAs) have been implicated in human disorders, from cancers to infectious diseases. Targeting miRNAs or their target genes with small molecules offers opportunities to modulate dysregulated cellular processes linked to diseases. Yet, predicting small molecules associated with miRNAs remains challenging due to the small size of small molecule-miRNA datasets. Herein, we develop a generalized deep learning framework, sChemNET, for predicting small molecules affecting miRNA bioactivity based on chemical structure and sequence information. sChemNET overcomes the limitation of sparse chemical information by an objective function that allows the neural network to learn chemical space from a large body of chemical structures yet unknown to affect miRNAs. We experimentally validated small molecules predicted to act on miR-451 or its targets and tested their role in erythrocyte maturation during zebrafish embryogenesis. We also tested small molecules targeting the miR-181 network and other miRNAs using in-vitro and in-vivo experiments. We demonstrate that our machine-learning framework can predict bioactive small molecules targeting miRNAs or their targets in humans and other mammalian organisms.
微小 RNA(miRNAs)与人类疾病有关,从癌症到传染病。用小分子靶向 miRNAs 或其靶基因为调节与疾病相关的失调细胞过程提供了机会。然而,由于小分子-miRNA 数据集较小,预测与 miRNAs 相关的小分子仍然具有挑战性。在此,我们开发了一种通用的深度学习框架 sChemNET,用于基于化学结构和序列信息预测影响 miRNA 生物活性的小分子。sChemNET 通过一个目标函数克服了化学信息稀疏的限制,该目标函数允许神经网络从大量尚未已知影响 miRNAs 的化学结构中学习化学空间。我们实验验证了预测作用于 miR-451 或其靶标的小分子,并测试了它们在斑马鱼胚胎发生过程中对红细胞成熟的作用。我们还使用体外和体内实验测试了靶向 miR-181 网络和其他 miRNAs 的小分子。我们证明我们的机器学习框架可以预测靶向人类和其他哺乳动物 miRNA 或其靶标的生物活性小分子。
SLAS Discov. 2023-12
Curr Opin Chem Biol. 2015-2
PLoS Comput Biol. 2018-7-13
Curr Top Med Chem. 2019
ACS Chem Biol. 2014-1-3
Expert Opin Ther Targets. 2024-12
Comb Chem High Throughput Screen. 2023
Nutr Res Rev. 2023-6
Patterns (N Y). 2022-1-14
Cell Rep. 2021-10-19