Suppr超能文献

miRAW:一种基于深度学习的方法,通过分析完整的 microRNA 转录本来预测 microRNA 靶标。

miRAW: A deep learning-based approach to predict microRNA targets by analyzing whole microRNA transcripts.

机构信息

Department of Medical Genetics, University of Oslo, Oslo, Norway.

Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.

出版信息

PLoS Comput Biol. 2018 Jul 13;14(7):e1006185. doi: 10.1371/journal.pcbi.1006185. eCollection 2018 Jul.

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by binding to partially complementary regions within the 3'UTR of their target genes. Computational methods play an important role in target prediction and assume that the miRNA "seed region" (nt 2 to 8) is required for functional targeting, but typically only identify ∼80% of known bindings. Recent studies have highlighted a role for the entire miRNA, suggesting that a more flexible methodology is needed. We present a novel approach for miRNA target prediction based on Deep Learning (DL) which, rather than incorporating any knowledge (such as seed regions), investigates the entire miRNA and 3'TR mRNA nucleotides to learn a uninhibited set of feature descriptors related to the targeting process. We collected more than 150,000 experimentally validated homo sapiens miRNA:gene targets and cross referenced them with different CLIP-Seq, CLASH and iPAR-CLIP datasets to obtain ∼20,000 validated miRNA:gene exact target sites. Using this data, we implemented and trained a deep neural network-composed of autoencoders and a feed-forward network-able to automatically learn features describing miRNA-mRNA interactions and assess functionality. Predictions were then refined using information such as site location or site accessibility energy. In a comparison using independent datasets, our DL approach consistently outperformed existing prediction methods, recognizing the seed region as a common feature in the targeting process, but also identifying the role of pairings outside this region. Thermodynamic analysis also suggests that site accessibility plays a role in targeting but that it cannot be used as a sole indicator for functionality. Data and source code available at: https://bitbucket.org/account/user/bipous/projects/MIRAW.

摘要

微小 RNA(miRNA)是一种小的非编码 RNA,通过与靶基因 3'UTR 内部分互补区域结合来调节基因表达。计算方法在靶基因预测中起着重要作用,并假设 miRNA 的“种子区域”(nt2 到 8)是功能靶向所必需的,但通常只能识别约 80%的已知结合。最近的研究强调了整个 miRNA 的作用,表明需要一种更灵活的方法。我们提出了一种基于深度学习(DL)的 miRNA 靶基因预测新方法,该方法不是基于任何知识(如种子区域),而是研究整个 miRNA 和 3'UTR mRNA 核苷酸,以学习与靶向过程相关的一组无限制的特征描述符。我们收集了超过 150,000 个实验验证的 Homo sapiens miRNA:基因靶标,并与不同的 CLIP-Seq、CLASH 和 iPAR-CLIP 数据集交叉引用,以获得约 20,000 个验证的 miRNA:基因精确靶标位点。使用这些数据,我们实现并训练了一个由自动编码器和前馈网络组成的深度神经网络,能够自动学习描述 miRNA-mRNA 相互作用和评估功能的特征。然后使用位置或位点可及性能量等信息来细化预测。在使用独立数据集进行的比较中,我们的 DL 方法始终优于现有预测方法,它不仅将种子区域识别为靶向过程中的一个共同特征,还识别了该区域之外配对的作用。热力学分析还表明,位点可及性在靶向中起作用,但不能仅作为功能的唯一指标。数据和源代码可在以下网址获得:https://bitbucket.org/account/user/bipous/projects/MIRAW。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a40/6067737/30f049afa32f/pcbi.1006185.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验