Santos Suzana de Siqueira, Torres Mateo, Galeano Diego, Sánchez María Del Mar, Cernuzzi Luca, Paccanaro Alberto
Escola de Matemática Aplicada, Fundação Getulio Vargas, Rio de Janeiro 22250-900, Brazil.
COVID-19 International Research Team.
Patterns (N Y). 2022 Jan 14;3(1):100396. doi: 10.1016/j.patter.2021.100396. Epub 2021 Nov 9.
We present two machine learning approaches for drug repurposing. While we have developed them for COVID-19, they are disease-agnostic. The two methodologies are complementary, targeting SARS-CoV-2 and host factors, respectively. Our first approach consists of a matrix factorization algorithm to rank broad-spectrum antivirals. Our second approach, based on network medicine, uses graph kernels to rank drugs according to the perturbation they induce on a subnetwork of the human interactome that is crucial for SARS-CoV-2 infection/replication. Our experiments show that our top predicted broad-spectrum antivirals include drugs indicated for compassionate use in COVID-19 patients; and that the ranking obtained by our kernel-based approach aligns with experimental data. Finally, we present the COVID-19 repositioning explorer (CoREx), an interactive online tool to explore the interplay between drugs and SARS-CoV-2 host proteins in the context of biological networks, protein function, drug clinical use, and Connectivity Map. CoREx is freely available at: https://paccanarolab.org/corex/.
我们提出了两种用于药物重新利用的机器学习方法。虽然我们是针对新冠病毒开发的,但它们与疾病无关。这两种方法是互补的,分别针对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)和宿主因素。我们的第一种方法包括一种矩阵分解算法,用于对广谱抗病毒药物进行排名。我们的第二种方法基于网络医学,使用图核根据药物对人类相互作用组中对SARS-CoV-2感染/复制至关重要的子网所诱导的扰动来对药物进行排名。我们的实验表明,我们预测的顶级广谱抗病毒药物包括已被批准用于新冠病毒患者同情用药的药物;并且我们基于核的方法所获得的排名与实验数据一致。最后,我们展示了新冠病毒重新利用探索器(CoREx),这是一个交互式在线工具,用于在生物网络、蛋白质功能、药物临床应用和连通性图谱的背景下探索药物与SARS-CoV-2宿主蛋白之间的相互作用。CoREx可在以下网址免费获取:https://paccanarolab.org/corex/ 。