Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany.
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK.
Nat Commun. 2024 Oct 23;15(1):9122. doi: 10.1038/s41467-024-52936-9.
Motility coupled to responsive behavior is essential for many microorganisms to seek and establish appropriate habitats. One of the simplest possible responses, reversing the direction of motion, is believed to enable filamentous cyanobacteria to form stable aggregates or accumulate in suitable light conditions. Here, we demonstrate that filamentous morphology in combination with responding to light gradients by reversals has consequences far beyond simple accumulation: Entangled aggregates form at the boundaries of illuminated regions, harnessing the boundary to establish local order. We explore how the light pattern, in particular its boundary curvature, impacts aggregation. A minimal mechanistic model of active flexible filaments resembles the experimental findings, thereby revealing the emergent and generic character of these structures. This phenomenon may enable elongated microorganisms to generate adaptive colony architectures in limited habitats or guide the assembly of biomimetic fibrous materials.
运动与响应行为相结合对于许多微生物来说至关重要,它们需要通过这种方式寻找和建立合适的栖息地。反向运动是最简单的响应之一,被认为使丝状蓝细菌能够形成稳定的聚集体或在适宜的光照条件下积累。在这里,我们证明丝状形态与通过反向运动响应光梯度相结合,具有远远超出简单积累的后果:纠缠的聚集体在光照区域的边界处形成,利用边界建立局部有序。我们探索了光模式,特别是其边界曲率,如何影响聚集。活性柔性丝的最小力学模型类似于实验结果,从而揭示了这些结构的涌现和通用特征。这种现象可能使细长的微生物能够在有限的栖息地中产生适应性的菌落结构,或指导仿生纤维材料的组装。