Suppr超能文献

稳定态纳米晶Cu-Ta合金冲击加载过程中变形和损伤累积抗性的直接观察。

Direct observation of deformation and resistance to damage accumulation during shock loading of stabilized nanocrystalline Cu-Ta alloys.

作者信息

Hornbuckle B C, Koju R K, Kennedy G, Jannotti P, Lorenzo N, Lloyd J T, Giri A, Solanki K, Thadhani N N, Mishin Y, Darling K A

机构信息

Army Research Directorate, DEVCOM Army Research Laboratory, APG, MD, 21005, USA.

Department of Physics and Astronomy, George Mason University, MSN 3F3, Fairfax, VA, 22030, USA.

出版信息

Nat Commun. 2024 Oct 23;15(1):9135. doi: 10.1038/s41467-024-53142-3.

Abstract

Energy absorption by matter is fundamental to natural and man-made processes. However, despite this ubiquity, developing materials capable of withstanding severe energy fluxes without degradation is a significant challenge in materials science and engineering. Despite recent advances in creating alloys resistant to energy fluxes, mitigating the damage caused by the absorption and transfer of mechanical energy remains a critical obstacle in both fundamental science and technological applications. This challenge is especially prominent when the mechanical energy is transferred to the material by shock loading. This study demonstrates a phenomenon in which microstructurally stabilized nanocrystalline Cu-Ta alloys can undergo reversal or nearly complete recovery of the dislocation structure after multiple shock-loading impacts, unlike any other known metallic material. The microstructure of these alloys can withstand repeated shock-wave interactions at pressures up to 12 GPa without any significant microstructural damage or deterioration, demonstrating an extraordinary capacity to be virtually immune to the detrimental effects of shock loading.

摘要

物质对能量的吸收是自然和人造过程的基础。然而,尽管能量吸收无处不在,但开发能够承受高强度能量通量而不降解的材料仍是材料科学与工程领域的一项重大挑战。尽管最近在制造抗能量通量合金方面取得了进展,但减轻机械能吸收和传递所造成的损伤在基础科学和技术应用中仍然是一个关键障碍。当机械能通过冲击加载传递到材料上时,这一挑战尤为突出。本研究展示了一种现象,即微观结构稳定的纳米晶Cu-Ta合金在多次冲击加载后,位错结构可以发生反转或几乎完全恢复,这与其他任何已知金属材料都不同。这些合金的微观结构能够承受高达12 GPa压力下的反复冲击波相互作用,而不会出现任何明显的微观结构损伤或劣化,显示出几乎不受冲击加载有害影响的非凡能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb7b/11499930/0a2e5bee341e/41467_2024_53142_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验