Suppr超能文献

用于甲烷光电催化部分氧化的BiVO中氧空位诱导的缺陷偶极子

Oxygen vacancy induced defect dipoles in BiVO for photoelectrocatalytic partial oxidation of methane.

作者信息

Li Xianlong, Wang Zhiliang, Sasani Alireza, Baktash Ardeshir, Wang Kai, Lu Haijiao, You Jiakang, Chen Peng, Chen Ping, Bao Yifan, Zhang Shujun, Liu Gang, Wang Lianzhou

机构信息

Nanomaterials Centre, School of Chemical Engineering, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia.

CESAM QMAT Physique Théorique des Matériaux, Université de Liège, Liège, Belgium.

出版信息

Nat Commun. 2024 Oct 23;15(1):9127. doi: 10.1038/s41467-024-53426-8.

Abstract

A strong driving force for charge separation and transfer in semiconductors is essential for designing effective photoelectrodes for solar energy conversion. While defect engineering and polarization alignment can enhance this process, their potential interference within a photoelectrode remains unclear. Here we show that oxygen vacancies in bismuth vanadate (BiVO) can create defect dipoles due to a disruption of symmetry. The modified photoelectrodes exhibit a strong correlation between charge separation and transfer capability and external electrical poling, which is not seen in unmodified samples. Applying poling at -150 Volt boosts charge separation and transfer efficiency to over 90%. A photocurrent density of 6.3 mA cm is achieved on the photoelectrode after loading with a nickel-iron oxide-based cocatalyst. Furthermore, using generated holes for methane partial oxidation can produce methanol with a Faradaic efficiency of approximately 6%. These findings provide valuable insights into the photoelectrocatalytic conversion of greenhouse gases into valuable chemical products.

摘要

半导体中电荷分离和转移的强大驱动力对于设计用于太阳能转换的有效光电极至关重要。虽然缺陷工程和极化排列可以增强这一过程,但它们在光电极内的潜在干扰仍不明确。在这里,我们表明钒酸铋(BiVO)中的氧空位会由于对称性破坏而产生缺陷偶极子。改性光电极在电荷分离和转移能力与外部电极化之间表现出很强的相关性,而未改性样品中则未观察到这种相关性。在 -150伏下施加极化可将电荷分离和转移效率提高到90%以上。在负载基于镍铁氧化物的助催化剂后,光电极上实现了6.3 mA cm的光电流密度。此外,利用产生的空穴进行甲烷部分氧化可以生产甲醇,法拉第效率约为6%。这些发现为将温室气体光电催化转化为有价值的化学产品提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6901/11499990/79bf195f81ee/41467_2024_53426_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验