Group for Ferroelectrics and Functional Oxides, Swiss Federal Institute of Technology-EPFL, 1015 Lausanne, Switzerland.
Group for Electroceramic Thin Films, Swiss Federal Institute of Technology-EPFL, 1015 Lausanne, Switzerland.
Science. 2022 Feb 11;375(6581):653-657. doi: 10.1126/science.abm7497. Epub 2022 Feb 10.
Piezoelectrics are materials that linearly deform in response to an applied electric field. As a fundamental prerequisite, piezoelectric materials must have a noncentrosymmetric crystal structure. For more than a century, this has remained a major obstacle for finding piezoelectric materials. We circumvented this limitation by breaking the crystallographic symmetry and inducing large and sustainable piezoelectric effects in centrosymmetric materials by the electric field-induced rearrangement of oxygen vacancies. Our results show the generation of extraordinarily large piezoelectric responses [with piezoelectric strain coefficients () of ~200,000 picometers per volt at millihertz frequencies] in cubic fluorite gadolinium-doped CeO films, which are two orders of magnitude larger than the responses observed in the presently best-known lead-based piezoelectric relaxor-ferroelectric oxide at kilohertz frequencies. These findings provide opportunities to design piezoelectric materials from environmentally friendly centrosymmetric ones.
压电体是一种在施加电场时会发生线性变形的材料。作为一个基本前提,压电材料必须具有非中心对称的晶体结构。一个多世纪以来,这一直是寻找压电材料的主要障碍。我们通过打破晶体对称性,并通过电场诱导的氧空位重新排列在中心对称材料中诱导大且可持续的压电效应,从而克服了这一限制。我们的结果表明,在立方萤石掺镝氧化铈薄膜中产生了非常大的压电响应[在毫赫兹频率下的压电应变系数()约为 200000 皮米每伏特],比在目前已知的千赫兹频率下的基于铅的压电弛豫铁电氧化物的响应大两个数量级。这些发现为设计从环保的中心对称材料中获得的压电材料提供了机会。