Department of Electrical Engineering, Marwadi University, Rajkot, 360003, Gujarat, India.
Sci Rep. 2024 Oct 23;14(1):25047. doi: 10.1038/s41598-024-75156-z.
Rapid and reliable detection of human survivors trapped under debris is crucial for effective post-earthquake search and rescue (SAR) operations. This paper presents a novel approach to survivor detection using a snake robot equipped with deep learning (DL) based object identification algorithms. We evaluated the performance of three main algorithms: Faster R-CNN, Single Shot MultiBox Detector (SSD), and You Only Look Once (YOLO). While these algorithms are initially trained on the PASCAL VOC 2012 dataset for human identification, we address the lack of a dedicated dataset for trapped individuals by compiling a new dataset of 200 images that specifically depicts this scenario, featuring cluttered environment and occlusion. Our evaluation takes into account detection accuracy, confidence interval, and running time. The results demonstrate that the YOLOv10 algorithm achieves the 98.4 mAP@0.5, accuracy of 98.5% for inference time of 15 ms. We validate the performance of these algorithms using images of human survivors trapped under debris and subjected to various occlusions.
快速、可靠地检测被困在废墟下的人类幸存者对于有效的地震后搜救(SAR)行动至关重要。本文提出了一种使用配备深度学习(DL)基于目标识别算法的蛇形机器人进行幸存者检测的新方法。我们评估了三种主要算法的性能:Faster R-CNN、单步多框检测器(SSD)和 You Only Look Once(YOLO)。虽然这些算法最初是在 PASCAL VOC 2012 数据集上进行人类识别训练的,但我们通过编译一个新的 200 张图像数据集来解决缺少专门用于被困个体的数据集的问题,该数据集专门描绘了这种情况,具有杂乱的环境和遮挡。我们的评估考虑了检测准确性、置信区间和运行时间。结果表明,YOLOv10 算法在 0.5 mAP@98.4 的情况下达到了 98.5%的准确率,推理时间为 15 毫秒。我们使用被困在废墟下并受到各种遮挡的人类幸存者的图像验证了这些算法的性能。