Reddy Saieshan, Pillay Nelendran, Singh Navin
Department of Electronic and Computer Engineering, Durban University of Technology, Durban 4001, South Africa.
J Imaging. 2024 Jul 5;10(7):162. doi: 10.3390/jimaging10070162.
The domain of object detection was revolutionized with the introduction of Convolutional Neural Networks (CNNs) in the field of computer vision. This article aims to explore the architectural intricacies, methodological differences, and performance characteristics of three CNN-based object detection algorithms, namely Faster Region-Based Convolutional Network (R-CNN), You Only Look Once v3 (YOLO), and Single Shot MultiBox Detector (SSD) in the specific domain application of vehicle detection. The findings of this study indicate that the SSD object detection algorithm outperforms the other approaches in terms of both performance and processing speeds. The Faster R-CNN approach detected objects in images with an average speed of 5.1 s, achieving a mean average precision of 0.76 and an average loss of 0.467. YOLO v3 detected objects with an average speed of 1.16 s, achieving a mean average precision of 0.81 with an average loss of 1.183. In contrast, SSD detected objects with an average speed of 0.5 s, exhibiting the highest mean average precision of 0.92 despite having a higher average loss of 2.625. Notably, all three object detectors achieved an accuracy exceeding 99%.
随着卷积神经网络(CNN)在计算机视觉领域的引入,目标检测领域发生了革命性变化。本文旨在探讨三种基于CNN的目标检测算法,即基于区域的快速卷积网络(R-CNN)、你只看一次v3(YOLO)和单阶段多框检测器(SSD)在车辆检测特定领域应用中的架构复杂性、方法差异和性能特征。本研究结果表明,SSD目标检测算法在性能和处理速度方面均优于其他方法。快速R-CNN方法在图像中检测目标的平均速度为5.1秒,平均精度均值为0.76,平均损失为0.467。YOLO v3检测目标的平均速度为1.16秒,平均精度均值为0.81,平均损失为1.183。相比之下,SSD检测目标的平均速度为0.5秒,尽管平均损失较高,为2.625,但平均精度均值最高,为0.92。值得注意的是,所有三种目标检测器的准确率均超过99%。