Department of Cardiology, University Hospital of Brest, 29609 Bd Tanguy Prigent, Brest, 29609, France.
IMT Atlantique Lab-STICC UMR CNRS, Brest, 6285, France.
Sci Rep. 2024 Oct 23;14(1):25008. doi: 10.1038/s41598-024-76128-z.
Pacemaker implantation (PMI) after transcatheter aortic valve implantation (TAVI) is a common complication. While computed tomography (CT) scan data are known predictors of PMI, no machine learning (ML) model integrating CT with clinical, ECG, and transthoracic echocardiography (TTE) data has been proposed. This study investigates the contribution of ML methods to predict PMI after TAVI, with a focus on the role of CT imaging data. A retrospective analysis was conducted on a cohort of 520 patients who underwent TAVI. Recursive feature elimination with SHAP values was used to select key variables from clinical, ECG, TTE, and CT data. Six ML models, including Support Vector Machines (SVM), were trained using these selected variables. The model's performance was evaluated using AUC-ROC, F1 score, and accuracy metrics. The PMI rate was 18.8%. The best-performing model achieved an AUC-ROC of 92.1% ± 4.7, an F1 score of 71.8% ± 9.9, and an accuracy of 87.9% ± 4.7 using 22 variables, 9 of which were CT-based. Membranous septum measurements and their dynamic variations were critical predictors. Our ML model provides robust PMI predictions, enabling personalized risk assessments. The model is implemented online for broad clinical use.
经导管主动脉瓣植入术(TAVI)后植入起搏器是一种常见的并发症。虽然计算机断层扫描(CT)扫描数据是起搏器植入的已知预测因素,但尚未提出将 CT 与临床、心电图和经胸超声心动图(TTE)数据集成的机器学习(ML)模型。本研究探讨了 ML 方法对 TAVI 后起搏器植入的预测作用,重点关注 CT 成像数据的作用。对接受 TAVI 的 520 例患者的队列进行了回顾性分析。使用 SHAP 值的递归特征消除从临床、心电图、TTE 和 CT 数据中选择关键变量。使用这些选定变量训练了 6 个包括支持向量机(SVM)在内的 ML 模型。使用 AUC-ROC、F1 评分和准确性指标评估模型的性能。起搏器植入率为 18.8%。使用 22 个变量(其中 9 个基于 CT),最佳性能模型的 AUC-ROC 为 92.1%±4.7,F1 评分为 71.8%±9.9,准确性为 87.9%±4.7。膜性间隔的测量及其动态变化是关键的预测因素。我们的 ML 模型提供了稳健的起搏器植入预测,能够进行个性化的风险评估。该模型已在线实施,可供广泛的临床使用。