Suppr超能文献

经 TAVI 后使用多模态成像数据进行起搏器植入预测的机器学习。

Machine learning for pacemaker implantation prediction after TAVI using multimodal imaging data.

机构信息

Department of Cardiology, University Hospital of Brest, 29609 Bd Tanguy Prigent, Brest, 29609, France.

IMT Atlantique Lab-STICC UMR CNRS, Brest, 6285, France.

出版信息

Sci Rep. 2024 Oct 23;14(1):25008. doi: 10.1038/s41598-024-76128-z.

Abstract

Pacemaker implantation (PMI) after transcatheter aortic valve implantation (TAVI) is a common complication. While computed tomography (CT) scan data are known predictors of PMI, no machine learning (ML) model integrating CT with clinical, ECG, and transthoracic echocardiography (TTE) data has been proposed. This study investigates the contribution of ML methods to predict PMI after TAVI, with a focus on the role of CT imaging data. A retrospective analysis was conducted on a cohort of 520 patients who underwent TAVI. Recursive feature elimination with SHAP values was used to select key variables from clinical, ECG, TTE, and CT data. Six ML models, including Support Vector Machines (SVM), were trained using these selected variables. The model's performance was evaluated using AUC-ROC, F1 score, and accuracy metrics. The PMI rate was 18.8%. The best-performing model achieved an AUC-ROC of 92.1% ± 4.7, an F1 score of 71.8% ± 9.9, and an accuracy of 87.9% ± 4.7 using 22 variables, 9 of which were CT-based. Membranous septum measurements and their dynamic variations were critical predictors. Our ML model provides robust PMI predictions, enabling personalized risk assessments. The model is implemented online for broad clinical use.

摘要

经导管主动脉瓣植入术(TAVI)后植入起搏器是一种常见的并发症。虽然计算机断层扫描(CT)扫描数据是起搏器植入的已知预测因素,但尚未提出将 CT 与临床、心电图和经胸超声心动图(TTE)数据集成的机器学习(ML)模型。本研究探讨了 ML 方法对 TAVI 后起搏器植入的预测作用,重点关注 CT 成像数据的作用。对接受 TAVI 的 520 例患者的队列进行了回顾性分析。使用 SHAP 值的递归特征消除从临床、心电图、TTE 和 CT 数据中选择关键变量。使用这些选定变量训练了 6 个包括支持向量机(SVM)在内的 ML 模型。使用 AUC-ROC、F1 评分和准确性指标评估模型的性能。起搏器植入率为 18.8%。使用 22 个变量(其中 9 个基于 CT),最佳性能模型的 AUC-ROC 为 92.1%±4.7,F1 评分为 71.8%±9.9,准确性为 87.9%±4.7。膜性间隔的测量及其动态变化是关键的预测因素。我们的 ML 模型提供了稳健的起搏器植入预测,能够进行个性化的风险评估。该模型已在线实施,可供广泛的临床使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f1f/11500093/381a90c81c62/41598_2024_76128_Fig1_HTML.jpg

相似文献

1
Machine learning for pacemaker implantation prediction after TAVI using multimodal imaging data.
Sci Rep. 2024 Oct 23;14(1):25008. doi: 10.1038/s41598-024-76128-z.
5
Impact of Interventricular membranous septum length on pacemaker need with different Transcatheter aortic valve implantation systems.
Int J Cardiol. 2021 Jun 15;333:152-158. doi: 10.1016/j.ijcard.2021.02.080. Epub 2021 Mar 3.
10
Impact of sigmoid septum on periprocedural outcomes following transcatheter aortic valve implantation using current-generation valves.
Int J Cardiovasc Imaging. 2022 Jan;38(1):171-180. doi: 10.1007/s10554-021-02479-7. Epub 2021 Nov 29.

本文引用的文献

3
LDANet: Automatic lung parenchyma segmentation from CT images.
Comput Biol Med. 2023 Mar;155:106659. doi: 10.1016/j.compbiomed.2023.106659. Epub 2023 Feb 10.
5
Computed tomography derived predictors of permanent pacemaker implantation after transcatheter aortic valve replacement: A meta-analysis.
Catheter Cardiovasc Interv. 2021 Nov 15;98(6):E897-E907. doi: 10.1002/ccd.29805. Epub 2021 Jun 2.
6
Machine Learning Algorithms for Prediction of Permanent Pacemaker Implantation After Transcatheter Aortic Valve Replacement.
Circ Arrhythm Electrophysiol. 2021 Mar;14(3):e008941. doi: 10.1161/CIRCEP.120.008941. Epub 2021 Mar 9.
7
Machine Learning and the Future of Cardiovascular Care: JACC State-of-the-Art Review.
J Am Coll Cardiol. 2021 Jan 26;77(3):300-313. doi: 10.1016/j.jacc.2020.11.030.
8
Incidence, Predictors, and Implications of Permanent Pacemaker Requirement After Transcatheter Aortic Valve Replacement.
JACC Cardiovasc Interv. 2021 Jan 25;14(2):115-134. doi: 10.1016/j.jcin.2020.09.063.
9
Machine learning method for predicting pacemaker implantation following transcatheter aortic valve replacement.
Pacing Clin Electrophysiol. 2021 Feb;44(2):334-340. doi: 10.1111/pace.14163. Epub 2021 Jan 28.
10
Systematic Approach to High Implantation of SAPIEN-3 Valve Achieves a Lower Rate of Conduction Abnormalities Including Pacemaker Implantation.
Circ Cardiovasc Interv. 2021 Jan;14(1):e009407. doi: 10.1161/CIRCINTERVENTIONS.120.009407. Epub 2021 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验