Carl Nicolas, Schramm Franziska, Haggenmüller Sarah, Kather Jakob Nikolas, Hetz Martin J, Wies Christoph, Michel Maurice Stephan, Wessels Frederik, Brinker Titus J
Department of Digital Prevention, Diagnostics and Therapy Guidance, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Department of Urology and Urological Surgery, University Medical Center Mannheim, Ruprecht-Karls University Heidelberg, Mannheim, Germany.
NPJ Precis Oncol. 2024 Oct 23;8(1):240. doi: 10.1038/s41698-024-00733-4.
Large language models (LLMs) are undergoing intensive research for various healthcare domains. This systematic review and meta-analysis assesses current applications, methodologies, and the performance of LLMs in clinical oncology. A mixed-methods approach was used to extract, summarize, and compare methodological approaches and outcomes. This review includes 34 studies. LLMs are primarily evaluated on their ability to answer oncologic questions across various domains. The meta-analysis highlights a significant performance variance, influenced by diverse methodologies and evaluation criteria. Furthermore, differences in inherent model capabilities, prompting strategies, and oncological subdomains contribute to heterogeneity. The lack of use of standardized and LLM-specific reporting protocols leads to methodological disparities, which must be addressed to ensure comparability in LLM research and ultimately leverage the reliable integration of LLM technologies into clinical practice.
大语言模型(LLMs)正在针对各种医疗领域进行深入研究。本系统评价和荟萃分析评估了大语言模型在临床肿瘤学中的当前应用、方法和性能。采用混合方法来提取、总结和比较方法学方法及结果。本评价纳入了34项研究。大语言模型主要根据其回答各个领域肿瘤学问题的能力进行评估。荟萃分析突出了显著的性能差异,这受到多种方法和评估标准的影响。此外,固有模型能力、提示策略和肿瘤学子领域的差异导致了异质性。缺乏对标准化和大语言模型特定报告方案的使用导致了方法学上的差异,必须解决这些差异以确保大语言模型研究的可比性,并最终推动大语言模型技术可靠地融入临床实践。