Suppr超能文献

具有可调层间距的分级TiC@TiO MXene杂化物用于高耐用性锂离子电池。

Hierarchical TiC@TiO MXene hybrids with tunable interlayer distance for highly durable lithium-ion batteries.

作者信息

Li Li, Jiang Gaoxue, An Cuihua, Xie Zhengjun, Wang Yijing, Jiao Lifang, Yuan Huatang

机构信息

School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China.

出版信息

Nanoscale. 2020 May 14;12(18):10369-10379. doi: 10.1039/d0nr01222j.

Abstract

To realize high-rate and long-term performance of rechargeable batteries, the most effective approach is to develop an advanced hybrid material with a stable structure and more reaction active sites. Recently, 2D MXenes have become an up-and-coming electrode owing to their high conductivity and large redox-active surface area. In this work, we firstly prepared Ti3C2 MXenes through the selective etching of silicon from Ti3SiC2 (MAX) using HF and an oxidant for highly durable lithium-ion batteries (LIBs). The interlayer distance of Ti3C2 MXenes can be controlled with the oxidizability of the oxidant and etching temperature. In addition, Ti3C2@TiO2 MXene hybrids with further expanded interlayer spacing were purposefully fabricated by a simple hydrothermal method. The hierarchical N-doped Ti3C2@TiO2 MXene hybrids show that the in situ synthesized nanoscale TiO2 particles are loaded homogeneously on the layered N-doped Ti3C2 surface. The interlayer distance of N-doped Ti3C2@TiO2 MXene can reach 12.77 Å when using HNO3 as the oxidant at room temperature. As an anode material, the N-doped Ti3C2@TiO2(HNO3-RT) hybrid displays a high reversible capacity of 302 mA h g-1 at 200 mA g-1 after 500 cycles and 154 mA h g-1 at 2000 mA g-1 after 1500 cycles, which indicates its long cycle lifetime and excellent stability in LIBs. This highly durable LIB anode performance is ascribed to synergetic contributions from the high capacitive contribution, high electrical conductivity, high-capacity of in situ formed nanoscale TiO2 and interlayer-expanded architecture of the N-doped Ti3C2@TiO2(HNO3-RT). This study provides a theoretical basis for the application of MXenes as high capacity anodes for advanced LIBs.

摘要

为实现可充电电池的高倍率和长期性能,最有效的方法是开发一种具有稳定结构和更多反应活性位点的先进混合材料。最近,二维MXenes因其高导电性和大的氧化还原活性表面积而成为一种新兴的电极材料。在这项工作中,我们首先通过使用HF和一种氧化剂从Ti3SiC2(MAX)中选择性蚀刻硅来制备Ti3C2 MXenes,用于高耐久性锂离子电池(LIBs)。Ti3C2 MXenes的层间距可以通过氧化剂的氧化性和蚀刻温度来控制。此外,通过简单的水热法有目的地制备了层间距进一步扩大的Ti3C2@TiO2 MXene杂化物。分级N掺杂的Ti3C2@TiO2 MXene杂化物表明,原位合成的纳米级TiO2颗粒均匀地负载在层状N掺杂的Ti3C2表面。当在室温下使用HNO3作为氧化剂时,N掺杂的Ti3C2@TiO2 MXene的层间距可达12.77 Å。作为阳极材料,N掺杂的Ti3C2@TiO2(HNO3-RT)杂化物在500次循环后于200 mA g-1下显示出302 mA h g-1的高可逆容量,在1500次循环后于2000 mA g-1下显示出154 mA h g-1的高可逆容量,这表明其在LIBs中具有长循环寿命和优异的稳定性。这种高耐久性的LIB阳极性能归因于高电容贡献、高电导率、原位形成的纳米级TiO2的高容量以及N掺杂的Ti3C2@TiO2(HNO3-RT)的层间扩展结构的协同贡献。这项研究为MXenes作为先进LIBs的高容量阳极应用提供了理论基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验