Suppr超能文献

2015-2020 年波士顿医院门诊尿液培养中抗生素耐药的社会人口统计学差异:一项横断面分析。

Sociodemographic disparities in antibiotic-resistant outpatient urine cultures in a Boston hospital, 2015-2020: a cross-sectional analysis.

机构信息

University of Massachusetts T.H. Chan School of Medicine, Worcester, MA, USA.

Division of Geographic Medicine and Infectious Disease, Department of Medicine, Tufts Medical Center, 800 Washington St., #238, Boston, MA, 02111, USA.

出版信息

Int J Equity Health. 2024 Oct 23;23(1):219. doi: 10.1186/s12939-024-02308-y.

Abstract

BACKGROUND

Antibiotic resistance in uropathogens has rapidly escalated over time, complicating treatment and increasing morbidity and mortality. Few studies have explored how the social determinants of health may be associated with patients' risks for acquiring antibiotic-resistant (AR) uropathogens.

METHODS

We identified urine cultures collected from outpatients presenting to Tufts Medical Center Primary Care Practices between 2015 and 2020. Specimens were included if patients' age, sex, and residential address were recorded in the electronic medical record (EMR) and if their urine culture yielded Enterococcus spp. or one or more gram-negative bacterial organism(s) or for which antibiotic susceptibility profiling and species identification was conducted. We abstracted patients' sociodemographic characteristics from the EMR and used US Census Bureau data to identify characteristics about patients' census tracts of residence. We evaluated associations between individual- and neighborhood-level characteristics and patients' risk of having a urine culture resistant to (1) three or more antibiotic classes (i.e., multidrug resistant [MDR]), (2) first-line treatments, (3) fluoroquinolones, (4) aminoglycosides, or (5) ceftriaxone using logistic regression models and a Bonferroni correction to account for multiple hypothesis testing.

RESULTS

We included urine cultures from 1,306 unique outpatients, most of whom were female (89%). Patients largely self-identified as Non-Hispanic White (36%), Asian (15%), or Non-Hispanic Black (11%). Over 60% lived in an environmental justice-designated census tract. Most included isolates were Escherichia coli (76%) or Klebsiella pneumoniae (7%). Using public insurance increased patients' odds of having a uropathogen resistant to first-line antibiotics, but living in a limited-income neighborhood reduced patients' odds of having a MDR uropathogen by 47%. We noted a strong but non-significant positive trend between speaking a language other than English and having an aminoglycoside-resistant uropathogen (p-value = 0.02). Most notably, after controlling for other factors, we observed no statistically significant associations between race or ethnicity and AR uropathogens.

CONCLUSION

The social determinants of health may play important and intersecting roles in determining a patient's risk of having a resistant uropathogens that is more challenging or expensive to treat. It is crucial to acknowledge how race is likely to be a proxy for other factors affecting health, and to consider that some groups may be disproportionately impacted by antibiotic resistance.

摘要

背景

尿路病原体的抗生素耐药性随着时间的推移迅速升级,使治疗变得复杂,并增加了发病率和死亡率。很少有研究探讨健康的社会决定因素如何与患者获得抗生素耐药(AR)尿路病原体的风险相关。

方法

我们从 2015 年至 2020 年间在塔夫茨医疗中心初级保健诊所就诊的门诊患者中识别出尿液培养物。如果患者的年龄、性别和居住地址记录在电子病历(EMR)中,并且他们的尿液培养物产生肠球菌属或一种或多种革兰氏阴性细菌,或者进行了抗生素敏感性分析和物种鉴定,则将标本纳入研究。我们从 EMR 中提取患者的社会人口统计学特征,并使用美国人口普查局的数据来识别患者居住的普查区的特征。我们使用逻辑回归模型评估个体和邻里特征与患者尿液培养物对(1)三种或更多种抗生素类别(即多药耐药[MDR])、(2)一线治疗、(3)氟喹诺酮类药物、(4)氨基糖苷类药物或(5)头孢曲松的耐药性之间的关联,并使用 Bonferroni 校正来纠正多重假设检验。

结果

我们纳入了 1306 名独特门诊患者的尿液培养物,其中大多数为女性(89%)。患者主要自我认定为非西班牙裔白人(36%)、亚洲人(15%)或非西班牙裔黑人(11%)。超过 60%的人居住在环境正义指定的普查区。大多数包括的分离株为大肠杆菌(76%)或肺炎克雷伯菌(7%)。使用公共保险会增加患者对一线抗生素耐药的尿路病原体的几率,但居住在收入有限的社区会使患者对 MDR 尿路病原体的几率降低 47%。我们注意到,讲英语以外的语言与氨基糖苷类耐药尿路病原体之间存在强烈但非显著的正相关趋势(p 值=0.02)。值得注意的是,在控制其他因素后,我们观察到种族或民族与 AR 尿路病原体之间没有统计学意义上的关联。

结论

健康的社会决定因素可能在确定患者具有更具挑战性或更昂贵治疗的耐药尿路病原体的风险方面发挥重要且相互交叉的作用。必须认识到种族可能是影响健康的其他因素的代名词,并考虑到某些群体可能会受到抗生素耐药性的不成比例影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/019e/11520160/af1a5c046aeb/12939_2024_2308_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验