Suppr超能文献

少数研究的罕见事件荟萃分析中异质性参数的先验分布比较

Comparison of Prior Distributions for the Heterogeneity Parameter in a Rare Events Meta-Analysis of a Few Studies.

作者信息

Yao Minghong, Mei Fan, Zou Kang, Li Ling, Sun Xin

机构信息

Institute of Neurosurgery and Chinese Evidence-Based Medicine Center and Cochrane China Center and MAGIC China Center, West China Hospital, Sichuan University, Chengdu, China.

NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Sichuan University, Chengdu, China.

出版信息

Pharm Stat. 2025 Mar-Apr;24(2):e2448. doi: 10.1002/pst.2448. Epub 2024 Oct 23.

Abstract

Bayesian meta-analysis is a promising approach for rare events meta-analysis. However, the inference of the overall effect in rare events meta-analysis is sensitive to the choice of prior distribution for the heterogeneity parameter. Therefore, it is crucial to assign a convincing prior specification and ensure that it is both plausible and transparent. Various priors for the heterogeneity parameter have been proposed; however, the comparative performance of alternative prior specifications in rare events meta-analysis is poorly understood. Based on a binomial-normal hierarchical model, we conducted a comprehensive simulation study to compare seven heterogeneity prior specifications for binary outcomes, using the odds ratio as the metric. We compared their performance in terms of coverage, median percentage bias, width of the 95% credible interval, and root mean square error (RMSE). We illustrate the results with two recently published rare events meta-analyses of a few studies. The results show that the half-normal prior (with a scale of 0.5), the prior proposed by Turner et al. for the general healthcare setting (without restriction to a specific type of outcome) and for the adverse event setting perform well when the degree of heterogeneity is not relatively high, yielding smaller bias and shorter interval widths with similar coverage and RMSE in most cases compared to other prior specifications. None of the priors performed better when the heterogeneity between-studies were significantly extreme.

摘要

贝叶斯荟萃分析是罕见事件荟萃分析的一种很有前景的方法。然而,罕见事件荟萃分析中总体效应的推断对异质性参数先验分布的选择很敏感。因此,给出一个有说服力的先验设定并确保其合理且透明至关重要。针对异质性参数已经提出了各种先验;然而,在罕见事件荟萃分析中替代先验设定的比较性能却鲜为人知。基于二项式 - 正态分层模型,我们进行了一项全面的模拟研究,以使用比值比作为度量标准,比较二元结局的七种异质性先验设定。我们从覆盖率、中位数百分比偏差、95%可信区间宽度和均方根误差(RMSE)方面比较了它们的性能。我们用最近发表的两项关于少数研究的罕见事件荟萃分析来说明结果。结果表明,当异质性程度不是相对较高时,半正态先验(尺度为0.5)、Turner等人针对一般医疗环境(不限于特定类型的结局)和不良事件环境提出的先验表现良好,与其他先验设定相比,在大多数情况下偏差更小、区间宽度更短,且覆盖率和RMSE相似。当研究间异质性显著极端时,没有一种先验表现得更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验