Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany.
Res Synth Methods. 2020 Jan;11(1):74-90. doi: 10.1002/jrsm.1370. Epub 2019 Aug 22.
Meta-analyses of clinical trials targeting rare events face particular challenges when the data lack adequate numbers of events for all treatment arms. Especially when the number of studies is low, standard random-effects meta-analysis methods can lead to serious distortions because of such data sparsity. To overcome this, we suggest the use of weakly informative priors (WIPs) for the treatment effect parameter of a Bayesian meta-analysis model, which may also be seen as a form of penalization. As a data model, we use a binomial-normal hierarchical model (BNHM) that does not require continuity corrections in case of zero counts in one or both arms. We suggest a normal prior for the log-odds ratio with mean 0 and standard deviation 2.82, which is motivated (a) as a symmetric prior centered around unity and constraining the odds ratio within a range from 1/250 to 250 with 95% probability and (b) as consistent with empirically observed effect estimates from a set of 37 773 meta-analyses from the Cochrane Database of Systematic Reviews. In a simulation study with rare events and few studies, our BNHM with a WIP outperformed a Bayesian method without a WIP and a maximum likelihood estimator in terms of smaller bias and shorter interval estimates with similar coverage. Furthermore, the methods are illustrated by a systematic review in immunosuppression of rare safety events following pediatric transplantation. A publicly available R package, MetaStan, is developed to automate a Bayesian implementation of meta-analysis models using WIPs.
针对罕见事件的临床试验进行荟萃分析时,如果所有治疗组的数据中缺乏足够数量的事件,就会面临特殊的挑战。特别是在研究数量较少的情况下,标准的随机效应荟萃分析方法可能会由于数据稀疏而导致严重的扭曲。为了解决这个问题,我们建议在贝叶斯荟萃分析模型中使用治疗效果参数的弱信息先验(WIP),这也可以看作是一种惩罚形式。作为数据模型,我们使用二项正态层次模型(BNHM),即使在一个或两个臂中存在零计数的情况下,也不需要进行连续性校正。我们建议使用均值为 0,标准差为 2.82 的对数优势比的正态先验,这是基于以下两个原因:(a)作为一个对称先验,以单位为中心,并将优势比限制在 1/250 到 250 的范围内,概率为 95%;(b)与从 Cochrane 系统评价数据库中 37773 项荟萃分析中观察到的经验效应估计值一致。在一项罕见事件和研究数量较少的模拟研究中,我们的 BNHM 与 WIP 相比,贝叶斯方法与 WIP 相比,在较小的偏差和更短的区间估计方面表现更好,同时具有相似的覆盖率。此外,还通过儿科移植后罕见安全事件的免疫抑制系统评价进行了方法说明。开发了一个名为 MetaStan 的公共 R 包,以自动化使用 WIP 的贝叶斯荟萃分析模型的实现。