Suppr超能文献

利用免疫组织化学标志物对淋巴瘤进行分类的层次方法的开发和验证。

Development and validation of a hierarchical approach for lymphoma classification using immunohistochemical markers.

机构信息

Department of Automation, Tsinghua University, Beijing, China.

Yidu Cloud Technology Inc, Beijing, China.

出版信息

Cancer Med. 2024 Oct;13(20):e70120. doi: 10.1002/cam4.70120.

Abstract

BACKGROUND

Accurate lymphoma classification is critical for effective treatment and immunohistochemistry is a cost-effective and time-saving approach. Although several machine learning algorithms showed effective results, they focused on a specific task of classification but not the whole classification workflow, thus impractical to be applied in clinical settings. Thus, we aim to develop an effective and economic machine learning-assisted system that can streamline the lymphoma differential diagnostic workflow using EBER in situ hybridization and immunohistochemical markers.

METHODS

We included pathological reports diagnosed as lymphomas from two cancer centers (Sun Yat-sen University Cancer Center and Peking University Cancer Hospital & Institute). We proposed a hierarchical approach that mimicked the human diagnostic process and employed simplified panels of markers to perform a series of interpretable classification. The diagnostic accuracy for lymphoma pathological subtypes and the markers saving ratio were investigated in both temporal independent population and external medical center.

RESULTS

A total of 14,927 patients and corresponding immunohistochemical results from two cancer centers were included. The proposed system had high discriminative ability for differentiating lymphoma pathological subtypes (measured by mean AUC in three validation cohorts, non-Hodgkin and Hodgkin lymphoma: 0.959; non-Hodgkin subtypes: 0.983; B-lymphoma subtypes: 0.868; T-lymphoma subtypes: 0.962; DLBCL subtypes: 0.957). In addition, the system's well selected characteristics can contribute to the development of agreement on panels of markers for differential diagnosis and help minimize cost of immunohistochemical marker techniques (measured by marker saving ratio compared to real clinical settings, internal primary-stage cohort: 16.45% saved, p < 0.001; internal later-stage cohort: 21.73% saved, p < 0.001; external cohort: 3.67% saved, p < 0.001).

CONCLUSIONS

Machine learning-based hierarchical system using EBER in situ hybridization and IHC markers was developed, which could streamline the workflow by sequentially determining each lymphoma pathological subtype. The proposed system proved to be effective and cost-saving in independent and external validation, thus could be adopted affordably in future clinical practice.

摘要

背景

准确的淋巴瘤分类对于有效治疗至关重要,免疫组织化学是一种具有成本效益和节省时间的方法。虽然几种机器学习算法显示出了有效的结果,但它们专注于特定的分类任务,而不是整个分类工作流程,因此在临床环境中实际应用并不实用。因此,我们旨在开发一种有效且经济的机器学习辅助系统,该系统可以使用 EBER 原位杂交和免疫组织化学标志物简化淋巴瘤鉴别诊断工作流程。

方法

我们纳入了来自两个癌症中心(中山大学肿瘤防治中心和北京大学肿瘤医院暨研究所)的病理报告诊断为淋巴瘤的病例。我们提出了一种分层方法,该方法模拟了人类诊断过程,并采用简化的标志物组合进行一系列可解释的分类。在时间独立的人群和外部医疗中心中,我们研究了淋巴瘤病理亚型的诊断准确性和标志物节省率。

结果

共纳入了来自两个癌症中心的 14927 例患者和相应的免疫组化结果。该系统对区分淋巴瘤病理亚型具有很高的辨别能力(在三个验证队列中通过平均 AUC 衡量,非霍奇金和霍奇金淋巴瘤:0.959;非霍奇金淋巴瘤亚型:0.983;B 细胞淋巴瘤亚型:0.868;T 细胞淋巴瘤亚型:0.962;弥漫性大 B 细胞淋巴瘤亚型:0.957)。此外,该系统选择的特征有助于达成关于鉴别诊断标志物组合的共识,并有助于最大限度地降低免疫组织化学标志物技术的成本(与实际临床环境相比,通过标志物节省率衡量,内部原发性队列:节省 16.45%,p<0.001;内部晚期队列:节省 21.73%,p<0.001;外部队列:节省 3.67%,p<0.001)。

结论

开发了一种基于机器学习的使用 EBER 原位杂交和 IHC 标志物的分层系统,该系统可以通过依次确定每个淋巴瘤病理亚型来简化工作流程。该系统在独立和外部验证中均有效且具有成本效益,因此可以在未来的临床实践中经济实惠地采用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验