Suppr超能文献

结合数学建模、数据和临床靶点表达以支持双特异性抗体结合亲和力选择:以FAP-4-1BBL为例

Combining mathematical modeling, data and clinical target expression to support bispecific antibody binding affinity selection: a case example with FAP-4-1BBL.

作者信息

Sanchez Javier, Claus Christina, McIntyre Christine, Tanos Tamara, Boehnke Axel, Friberg Lena E, Jönsson Siv, Frances Nicolas

机构信息

Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland.

Department of Pharmacy, Uppsala University, Uppsala, Sweden.

出版信息

Front Pharmacol. 2024 Oct 9;15:1472662. doi: 10.3389/fphar.2024.1472662. eCollection 2024.

Abstract

The majority of bispecific costimulatory antibodies in cancer immunotherapy are capable of exerting tumor-specific T-cell activation by simultaneously engaging both tumor-associated targets and costimulatory receptors expressed by T cells. The amount of trimeric complex formed when the bispecific antibody is bound simultaneously to the T cell receptor and the tumor-associated target follows a bell-shaped curve with increasing bispecific antibody exposure/dose. The shape of the curve is determined by the binding affinities of the bispecific antibody to its two targets and target expression. Here, using the case example of FAP-4-1BBL, a fibroblast activation protein alpha (FAP)-directed 4-1BB (CD137) costimulator, the impact of FAP-binding affinity on trimeric complex formation and pharmacology was explored using mathematical modeling and simulation. We quantified (1) the minimum number of target receptors per cell required to achieve pharmacological effect, (2) the expected coverage of the patient population for 19 different solid tumor indications, and (3) the range of pharmacologically active exposures as a function of FAP-binding affinity. A 10-fold increase in FAP-binding affinity (from a dissociation constant [K] of 0.7 nM-0.07 nM) was predicted to reduce the number of FAP receptors needed to achieve 90% of the maximum pharmacological effect from 13,400 to 4,000. Also, the number of patients with colon cancer that would achieve 90% of the maximum effect would increase from 6% to 39%. In this work, a workflow to select binding affinities for bispecific antibodies that integrates preclinical data, mathematical modeling and simulation, and knowledge on target expression in the patient population, is provided. The early implementation of this approach can increase the probability of success with cancer immunotherapy in clinical development.

摘要

癌症免疫疗法中的大多数双特异性共刺激抗体能够通过同时结合肿瘤相关靶点和T细胞表达的共刺激受体来发挥肿瘤特异性T细胞激活作用。当双特异性抗体同时与T细胞受体和肿瘤相关靶点结合时形成的三聚体复合物的量,会随着双特异性抗体暴露量/剂量的增加呈钟形曲线变化。曲线的形状由双特异性抗体与其两个靶点的结合亲和力以及靶点表达决定。在此,以FAP - 4 - 1BBL为例,这是一种靶向成纤维细胞活化蛋白α(FAP)的4 - 1BB(CD137)共刺激剂,通过数学建模和模拟探索了FAP结合亲和力对三聚体复合物形成和药理学的影响。我们量化了:(1)实现药理学效应所需的每个细胞的靶受体最小数量;(2)19种不同实体瘤适应症患者群体的预期覆盖率;(3)作为FAP结合亲和力函数的药理学活性暴露范围。预计FAP结合亲和力增加10倍(解离常数[K]从0.7 nM变为0.07 nM),将使达到最大药理学效应90%所需的FAP受体数量从13400个减少到4000个。此外,达到最大效应90%的结肠癌患者数量将从6%增加到39%。在这项工作中,提供了一种选择双特异性抗体结合亲和力的工作流程,该流程整合了临床前数据、数学建模和模拟以及患者群体中靶点表达的知识。这种方法的早期实施可以提高癌症免疫疗法临床开发成功的概率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6410/11497128/a8d4d25cc5f7/fphar-15-1472662-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验