Suppr超能文献

基线计算机断层扫描成像结果有助于新发现的早期胸膜下非小细胞肺癌(T1或T2)的脏层胸膜侵犯的早期诊断。

Baseline computed tomography imaging findings could assist in early diagnosis of visceral pleural invasion for newly discovered early subpleural non-small cell lung cancer: T1 or T2.

作者信息

Li Li, Yang Qian, Luo Dehong, Wang Xiaoliang, Liu Zhou, Huang Rong

机构信息

Shantou University Medical College, Shantou, China.

Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.

出版信息

J Thorac Dis. 2024 Sep 30;16(9):5779-5791. doi: 10.21037/jtd-24-294. Epub 2024 Sep 2.

Abstract

BACKGROUND

Preoperative accurate visceral pleural infiltration (VPI) diagnosis for T1-size non-small cell lung cancer (NSCLC) is significant for clinical decision-making. The study aimed to explore the diagnostic efficacy of computed tomography (CT) imaging features and serum biomarkers in diagnosing VPI in newly discovered subpleural NSCLC ≤3 cm.

METHODS

There were 447 patients with NSCLC ≤3 cm retrospectively enrolled and assigned to the VPI group (n=81) and the non-VPI group (n=366) based on elastic fiber staining results. The serum biomarkers and CT imaging features were obtained for each subject. Univariate and multivariate analyses were used to identify the independent predictors for VPI. Area under the receiver operating characteristic (ROC) curve (AUC) was used to evaluate the diagnostic performance of each independent predictor and combined predictors in predicting VPI, with performance compared using the DeLong test.

RESULTS

For tumor biomarkers, the VPI group had a significantly higher percentage of cases with abnormal carcino-embryonic antigen (CEA) level, cytokeratin 19 fragment (CYFRA21-1) level, and pro-gastrin-releasing peptide (ProGRP) level than that of the non-VPI group (P<0.001, P=0.003, P=0.004). However, in multivariate analysis, only the lesion-pleura relationship patterns type Ia [odds ratio (OR) =20.689; 95% confidence interval (CI): 5.058-84.622; P<0.001], type Ib (OR =5.155; 95% CI: 1.178-22.552; P=0.03), type II (OR =7.154; 95% CI: 1.733-29.53; P=0.007) with type III as reference, solid lesion density (OR =9.954; 95% CI: 4.976-19.911; P<0.001) with part-solid density as reference were identified as the independent predictors for VPI. In predicting VPI, the combined model (AUC =0.885) significantly outperformed models based on lesion density (AUC =0.833) and lesion-pleura relationship patterns (AUC =0.655) (all P<0.001).

CONCLUSIONS

The CT predictors for VPI in patients with subpleural NSCLC (≤3 cm) were lesion density and lesion-pleura relationship patterns (pleural attachment and indentation), but not serum tumor biomarkers.

摘要

背景

术前准确诊断T1期非小细胞肺癌(NSCLC)的脏层胸膜浸润(VPI)对临床决策具有重要意义。本研究旨在探讨计算机断层扫描(CT)影像特征和血清生物标志物对新发现的≤3 cm胸膜下NSCLC中VPI的诊断效能。

方法

回顾性纳入447例≤3 cm的NSCLC患者,根据弹性纤维染色结果分为VPI组(n = 81)和非VPI组(n = 366)。获取每位受试者的血清生物标志物和CT影像特征。采用单因素和多因素分析确定VPI的独立预测因素。采用受试者工作特征(ROC)曲线下面积(AUC)评估各独立预测因素及联合预测因素预测VPI的诊断性能,使用DeLong检验比较性能。

结果

对于肿瘤生物标志物,VPI组癌胚抗原(CEA)水平、细胞角蛋白19片段(CYFRA21-1)水平和胃泌素释放肽前体(ProGRP)水平异常的病例百分比显著高于非VPI组(P < 0.001,P = 0.003,P = 0.004)。然而,在多因素分析中,仅以Ⅲ型为参照,病变-胸膜关系模式Ia型[比值比(OR)= 20.689;95%置信区间(CI):5.058 - 84.622;P < 0.001]、Ib型(OR = 5.155;95% CI:1.178 - 22.552;P = 0.03)、II型(OR = 7.154;95% CI:1.733 - 29.53;P = 0.007)以及以部分实性密度为参照的实性病变密度(OR = 9.954;95% CI:4.976 - 19.911;P < 0.001)被确定为VPI的独立预测因素。在预测VPI方面,联合模型(AUC = 0.885)显著优于基于病变密度(AUC = 0.833)和病变-胸膜关系模式(AUC = 0.655)的模型(均P < 0.00)。

结论

胸膜下NSCLC(≤3 cm)患者VPI的CT预测因素为病变密度和病变-胸膜关系模式(胸膜附着和凹陷),而非血清肿瘤生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69d6/11494540/fafc34fa8814/jtd-16-09-5779-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验