文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 F-氟代脱氧葡萄糖正电子发射断层扫描/计算机断层扫描最大标准单位值和计算机断层扫描特征的多变量分析,用于术前预测亚胸膜临床分期 IA 周围型肺腺癌患者内脏胸膜侵犯。

Multivariate analysis based on the maximum standard unit value of F-fluorodeoxyglucose positron emission tomography/computed tomography and computed tomography features for preoperative predicting of visceral pleural invasion in patients with subpleural clinical stage IA peripheral lung adenocarcinoma.

机构信息

Department of Radiology, Second Affiliated Hospital of Navy Medical University, Shanghai, China

Department of Radiology, Weifang Medical University, School of Medical Imaging, Weifang, China

出版信息

Diagn Interv Radiol. 2023 Mar 29;29(2):379-389. doi: 10.4274/dir.2023.222006. Epub 2023 Feb 21.


DOI:10.4274/dir.2023.222006
PMID:36988049
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10679694/
Abstract

PURPOSE: Preoperative prediction of visceral pleural invasion (VPI) is important because it enables thoracic surgeons to choose appropriate surgical plans. This study aimed to develop and validate a multivariate logistic regression model incorporating the maximum standardized uptake value (SUV) and valuable computed tomography (CT) signs for the non-invasive prediction of VPI status in subpleural clinical stage IA lung adenocarcinoma patients before surgery. METHODS: A total of 140 patients with subpleural clinical stage IA peripheral lung adenocarcinoma were recruited and divided into a training set (n = 98) and a validation set (n = 42), according to the positron emission tomography/CT examination temporal sequence, with a 7:3 ratio. Next, VPI-positive and VPI-negative groups were formed based on the pathological results. In the training set, the clinical information, the SUV, the relationship between the tumor and the pleura, and the CT features were analyzed using univariate analysis. The variables with significant differences were included in the multivariate analysis to construct a prediction model. A nomogram based on multivariate analysis was developed, and its predictive performance was verified in the validation set. RESULTS: The size of the solid component, the consolidation-to-tumor ratio, the solid component pleural contact length, the SUVmax, the density type, the pleural indentation, the spiculation, and the vascular convergence sign demonstrated significant differences between VPI-positive (n = 40) and VPI-negative (n = 58) cases on univariate analysis in the training set. A multivariate logistic regression model incorporated the SUV [odds ratio (OR): 1.753, = 0.002], the solid component pleural contact length (OR: 1.101, = 0.034), the pleural indentation (OR: 5.075, = 0.041), and the vascular convergence sign (OR: 13.324, = 0.025) as the best combination of predictors, which were all independent risk factors for VPI in the training group. The nomogram indicated promising discrimination, with an area under the curve value of 0.892 [95% confidence interval (CI), 0.813-0.946] in the training set and 0.885 (95% CI, 0.748-0.962) in the validation set. The calibration curve demonstrated that its predicted probabilities were in acceptable agreement with the actual probability. The decision curve analysis illustrated that the current nomogram would add more net benefit. CONCLUSION: The nomogram integrating the SUV and the CT features could non-invasively predict VPI status before surgery in subpleural clinical stage IA lung adenocarcinoma patients.

摘要

目的:术前预测内脏胸膜侵犯(VPI)非常重要,因为它使胸外科医生能够选择合适的手术方案。本研究旨在开发和验证一种多变量逻辑回归模型,该模型纳入最大标准化摄取值(SUV)和有价值的 CT 征象,以在术前对亚胸膜临床分期 IA 肺腺癌患者的 VPI 状态进行非侵入性预测。

方法:根据正电子发射断层扫描/CT 检查时间序列,将 140 例亚胸膜临床分期 IA 周围型肺腺癌患者分为训练集(n=98)和验证集(n=42),比例为 7:3。然后,根据病理结果将 VPI 阳性和 VPI 阴性组形成。在训练集中,使用单因素分析对临床信息、SUV、肿瘤与胸膜的关系以及 CT 特征进行分析。将有显著差异的变量纳入多因素分析,以构建预测模型。基于多因素分析开发了一个列线图,并在验证集中验证了其预测性能。

结果:在训练集中,VPI 阳性(n=40)和 VPI 阴性(n=58)患者之间,肿瘤的实性成分大小、实变与肿瘤的比值、实性成分胸膜接触长度、SUVmax、密度类型、胸膜凹陷、分叶征和血管汇聚征均有显著差异。多变量逻辑回归模型纳入 SUV[比值比(OR):1.753, = 0.002]、实性成分胸膜接触长度(OR:1.101, = 0.034)、胸膜凹陷(OR:5.075, = 0.041)和血管汇聚征(OR:13.324, = 0.025)作为预测 VPI 的最佳组合预测因子,均为 VPI 的独立危险因素。列线图显示出良好的判别能力,在训练组中曲线下面积值为 0.892[95%置信区间(CI):0.813-0.946],在验证组中为 0.885(95%CI:0.748-0.962)。校准曲线表明,其预测概率与实际概率具有良好的一致性。决策曲线分析表明,当前的列线图可以增加更多的净收益。

结论:纳入 SUV 和 CT 特征的列线图可在术前非侵入性预测亚胸膜临床分期 IA 肺腺癌患者的 VPI 状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00c2/10679694/221687d37836/DIR-29-379-g7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00c2/10679694/3a9268a81e7d/DIR-29-379-g1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00c2/10679694/2b538b927a7e/DIR-29-379-g2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00c2/10679694/460ddccde89b/DIR-29-379-g3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00c2/10679694/553c52955325/DIR-29-379-g4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00c2/10679694/fd4677019bd6/DIR-29-379-g5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00c2/10679694/5ddc2db1d01e/DIR-29-379-g6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00c2/10679694/221687d37836/DIR-29-379-g7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00c2/10679694/3a9268a81e7d/DIR-29-379-g1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00c2/10679694/2b538b927a7e/DIR-29-379-g2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00c2/10679694/460ddccde89b/DIR-29-379-g3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00c2/10679694/553c52955325/DIR-29-379-g4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00c2/10679694/fd4677019bd6/DIR-29-379-g5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00c2/10679694/5ddc2db1d01e/DIR-29-379-g6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00c2/10679694/221687d37836/DIR-29-379-g7.jpg

相似文献

[1]
Multivariate analysis based on the maximum standard unit value of F-fluorodeoxyglucose positron emission tomography/computed tomography and computed tomography features for preoperative predicting of visceral pleural invasion in patients with subpleural clinical stage IA peripheral lung adenocarcinoma.

Diagn Interv Radiol. 2023-3-29

[2]
Clinical Value of F-FDG PET/CT in Prediction of Visceral Pleural Invasion of Subsolid Nodule Stage I Lung Adenocarcinoma.

Acad Radiol. 2020-2-14

[3]
Nomogram using intratumoral and peritumoral radiomics for the preoperative prediction of visceral pleural invasion in clinical stage IA lung adenocarcinoma.

J Cardiothorac Surg. 2024-5-31

[4]
Tumour standardized uptake value on positron emission tomography is a novel predictor of adenocarcinoma in situ for c-Stage IA lung cancer patients with a part-solid nodule on thin-section computed tomography scan.

Interact Cardiovasc Thorac Surg. 2014-3

[5]
Nomogram for the preoperative prediction of Ki-67 expression and prognosis in stage IA lung adenocarcinoma based on clinical and multi-slice spiral computed tomography features.

BMC Med Imaging. 2024-6-12

[6]
Predictive value of CT and F-FDG PET/CT features on spread through air space in lung adenocarcinoma.

BMC Cancer. 2024-4-8

[7]
Prediction of pathologic node-negative clinical stage IA lung adenocarcinoma for optimal candidates undergoing sublobar resection.

J Thorac Cardiovasc Surg. 2012-8-9

[8]
CT texture analysis-based nomogram for the preoperative prediction of visceral pleural invasion in cT1N0M0 lung adenocarcinoma: an external validation cohort study.

Clin Radiol. 2022-3

[9]
Preoperative nomogram for predicting spread through air spaces in clinical-stage IA non-small cell lung cancer using F-fluorodeoxyglucose positron emission tomography/computed tomography.

J Cancer Res Clin Oncol. 2024-4-10

[10]
The value of preoperative positron emission tomography/computed tomography in differentiating the invasive degree of hypometabolic lung adenocarcinoma.

BMC Med Imaging. 2023-2-10

引用本文的文献

[1]
Integrating radiomics features and CT semantic characteristics for predicting visceral pleural invasion in clinical stage Ia peripheral lung adenocarcinoma.

Discov Oncol. 2025-5-16

[2]
Effect of respiratory phase on three-dimensional quantitative parameters of pulmonary subsolid nodules in low-dose computed tomography screening for lung cancer.

J Thorac Dis. 2025-3-31

[3]
Using the length of pleural tag to predetermine pleural invasion by lung adenocarcinomas.

Front Oncol. 2024-11-1

[4]
Risk analysis of visceral pleural invasion in malignant solitary pulmonary nodules that appear touching the pleural surface.

Ther Adv Respir Dis. 2024

[5]
Preoperative nomogram for predicting spread through air spaces in clinical-stage IA non-small cell lung cancer using F-fluorodeoxyglucose positron emission tomography/computed tomography.

J Cancer Res Clin Oncol. 2024-4-10

[6]
Predicting visceral pleural invasion in lung adenocarcinoma presenting as part-solid density utilizing a nomogram model combined with radiomics and clinical features.

Thorac Cancer. 2024-1

[7]
Correlations between iodine uptake, invasive CT features and pleural invasion in adenocarcinomas with pleural contact.

Sci Rep. 2023-9-27

本文引用的文献

[1]
Correlation analysis between metabolic tumor burden measured by positron emission tomography/computed tomography and the 2015 World Health Organization classification of lung adenocarcinoma, with a risk prediction model of tumor spread through air spaces.

Transl Cancer Res. 2020-10

[2]
The combination of computed tomography features and circulating tumor cells increases the surgical prediction of visceral pleural invasion in clinical T1N0M0 lung adenocarcinoma.

Transl Lung Cancer Res. 2021-11

[3]
Risk analysis in peripheral clinical T1 non-small cell lung cancer correlations between tumor-to-blood standardized uptake ratio on F-FDG PET-CT and primary tumor pathological invasiveness: a real-world observational study.

Quant Imaging Med Surg. 2022-1

[4]
Correlation between pleural tags on CT and visceral pleural invasion of peripheral lung cancer that does not appear touching the pleural surface.

Eur Radiol. 2021-12

[5]
Visceral Pleural Invasion in Pulmonary Adenocarcinoma: Differences in CT Patterns between Solid and Subsolid Cancers.

Radiol Cardiothorac Imaging. 2019-8-29

[6]
A PET/CT nomogram incorporating SUVmax and CT radiomics for preoperative nodal staging in non-small cell lung cancer.

Eur Radiol. 2021-8

[7]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

[8]
A Prognostic Nomogram Combining Immune-Related Gene Signature and Clinical Factors Predicts Survival in Patients With Lung Adenocarcinoma.

Front Oncol. 2020-8-6

[9]
Combination of Fluorine-18 Fluorodeoxyglucose Positron-Emission Tomography/Computed Tomography (¹⁸F-FDG PET/CT) and Tumor Markers to Diagnose Lymph Node Metastasis in Non-Small Cell Lung Cancer (NSCLC): A Retrospective and Prospective Study.

Med Sci Monit. 2020-6-2

[10]
Clinical Value of F-FDG PET/CT in Prediction of Visceral Pleural Invasion of Subsolid Nodule Stage I Lung Adenocarcinoma.

Acad Radiol. 2020-2-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索