经皮冠状动脉介入治疗后急性心肌梗死患者预后预测模型研究的建立与验证:出血与主要心血管不良事件

The development and validation of a prognostic prediction modeling study in acute myocardial infarction patients after percutaneous coronary intervention: hemorrhea and major cardiovascular adverse events.

作者信息

Chen Zijie, Zhang Lizhu, Li Rui, Wang Jing, Chen Liang, Jin Yan, Gao Mingzhu, Han Zhijun, Zhang Kaixin, Wang Junhong, Li Xing, Yang Chengjian

机构信息

Department of Cardiology, The Affiliated Wuxi Second People's Hospital, Nanjing Medical University, Wuxi, China.

Department of Clinical Research Center, The Affiliated Wuxi Second People's Hospital, Nanjing Medical University, Wuxi, China.

出版信息

J Thorac Dis. 2024 Sep 30;16(9):6216-6228. doi: 10.21037/jtd-24-1362. Epub 2024 Sep 26.

Abstract

BACKGROUND

Percutaneous coronary intervention (PCI) is one of the most important diagnostic and therapeutic techniques in cardiology. At present, the traditional prediction models for postoperative events after PCI are ineffective, but machine learning has great potential in identification and prediction of risk. Machine learning can reduce overfitting through regularization techniques, cross-validation and ensemble learning, making the model more accurate in predicting large amounts of complex unknown data. This study sought to identify the risk of hemorrhea and major adverse cardiovascular events (MACEs) in patients after PCI through machine learning.

METHODS

The entire study population consisted of 7,931 individual patients who underwent PCI at Jiangsu Provincial Hospital and The Affiliated Wuxi Second People's Hospital from January 2007 to January 2022. The risk of postoperative hemorrhea and MACE (including cardiac death and in-stent restenosis) was predicted by 53 clinical features after admission. The population was assigned to the training set and the validation set in a specific ratio by simple randomization. Different machine learning algorithms, including eXtreme Gradient Boosting (XGBoost), random forest (RF), and deep learning neural network (DNN), were trained to build prediction models. A 5-fold cross-validation was applied to correct errors. Several evaluation indexes, including the area under the receiver operating characteristic (ROC) curve (AUC), accuracy (Acc), sensitivity (Sens), specificity (Spec), and net reclassification improvement (NRI), were used to compare the predictive performance. To improve the interpretability of the model and identify risk factors individually, SHapley Additive exPlanation (SHAP) was introduced.

RESULTS

In this study, 306 patients (3.9%) experienced hemorrhea, 107 patients (1.3%) experienced cardiac death, and 218 patients (2.7%) developed in-stent restenosis. In the training set and validation set, except for previous PCI and statins, there were no significant differences. XGBoost was observed to be the best predictor of every event, namely hemorrhea [AUC: 0.921, 95% confidence interval (CI): 0.864-0.978, Acc: 0.845, Sens: 0.851, Spec: 0.837 and NRI: 0.140], cardiac death (AUC: 0.939, 95% CI: 0.903-0.975, Acc: 0.914, Sens: 0.950, Spec: 0.800 and NRI: 0.148), and in-stent restenosis (AUC: 0.915; 95% CI: 0.863-0.967, Acc: 0.834, Sens: 0.778, Spec: 0.902 and NRI: 0.077). SHAP showed that the number of stents had the greatest influence on hemorrhea, while age and drug-coated balloon were the main factors in cardiogenic death and stent restenosis (all P<0.05).

CONCLUSIONS

The XGBoost model (machine learning) performed better than the traditional logistic regression model in identifying hemorrhea and MACE after PCI. Machine learning models can be used as a tool for risk prediction. The machine learning model described in this study can personalize the prediction of hemorrhea and MACE after PCI for specific patients, helping clinicians adjust intervenable features.

摘要

背景

经皮冠状动脉介入治疗(PCI)是心脏病学中最重要的诊断和治疗技术之一。目前,PCI术后事件的传统预测模型效果不佳,但机器学习在风险识别和预测方面具有巨大潜力。机器学习可以通过正则化技术、交叉验证和集成学习减少过拟合,使模型在预测大量复杂未知数据时更加准确。本研究旨在通过机器学习识别PCI术后患者出血和主要不良心血管事件(MACE)的风险。

方法

整个研究人群包括2007年1月至2022年1月在江苏省人民医院和无锡市第二人民医院接受PCI的7931例患者。入院后根据53项临床特征预测术后出血和MACE(包括心源性死亡和支架内再狭窄)的风险。通过简单随机化将人群按特定比例分配到训练集和验证集。训练不同的机器学习算法,包括极端梯度提升(XGBoost)、随机森林(RF)和深度学习神经网络(DNN),以建立预测模型。采用5折交叉验证来纠正误差。使用几个评估指标,包括受试者操作特征(ROC)曲线下面积(AUC)、准确率(Acc)、敏感性(Sens)、特异性(Spec)和净重新分类改善(NRI),来比较预测性能。为了提高模型的可解释性并单独识别风险因素,引入了SHapley加性解释(SHAP)。

结果

在本研究中,306例患者(3.9%)发生出血,107例患者(1.3%)发生心源性死亡,218例患者(2.7%)发生支架内再狭窄。在训练集和验证集之间,除既往PCI和他汀类药物外,无显著差异。观察到XGBoost是每个事件的最佳预测指标,即出血(AUC:0.921,95%置信区间(CI):0.864-0.978,Acc:0.845,Sens:0.851,Spec:0.837,NRI:0.140)、心源性死亡(AUC:0.939,95%CI:0.903-0.975,Acc:0.914,Sens:0.950,Spec:0.800,NRI:0.148)和支架内再狭窄(AUC:0.915;95%CI:0.863-0.967,Acc:0.834,Sens:0.778,Spec:0.902,NRI:0.077)。SHAP显示支架数量对出血影响最大,而年龄和药物涂层球囊是心源性死亡和支架再狭窄的主要因素(均P<0.05)。

结论

XGBoost模型(机器学习)在识别PCI术后出血和MACE方面比传统逻辑回归模型表现更好。机器学习模型可作为风险预测工具。本研究中描述的机器学习模型可以针对特定患者对PCI术后出血和MACE进行个性化预测,帮助临床医生调整可干预特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55cd/11494537/875057602fb4/jtd-16-09-6216-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索