Suppr超能文献

用于水净化的磁性自掺杂TiO₂/Fe₃O₄@g-C₃N₄太阳能驱动光催化复合材料

Magnetic self-doped TiO /FeO@g-C solar-driven photocatalytic composite for water decontamination.

作者信息

Abdel-Hady Nesma A, Badawy Mohamed I, Attia Mohamed S, Gad-Allah Tarek A

机构信息

Water Pollution Research Department, National Research Centre 33 El Buhouth St., Dokki 12622 Giza Egypt

Chemistry Department, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt.

出版信息

RSC Adv. 2024 Oct 23;14(45):33666-33680. doi: 10.1039/d4ra05990e. eCollection 2024 Oct 17.

Abstract

Declining water resources and their contamination with chemicals risk the aquatic environment. Therefore, this work was devoted to designing a magnetically recyclable photocatalyst suitable for water treatment, namely, a TiO /FeO@g-C composite. Different preparation conditions were investigated together with the corresponding characteristics. The pure defective anatase TiO phase of low band gap energy was detected through XRD and DRS analyses. Low charge recombination after the formation of defects was confirmed. The performances of the prepared photocatalysts in phenol degradation under solar light were evaluated, revealing the superior efficiency of TiO prepared hydrothermally at 200 °C/24 h relative to intact TiO. This best sample was incorporated with FeO@g-C to facilitate its recovery and reuse. This successful combination was confirmed using XRD, Raman and XPS tools. TiO /FeO@g-C 2 : 1 formulation was found to be the most photoactive and could be reused up to five times without significant loss in its efficiency. Therefore, the precisely developed magnetic photocatalyst is promising for application in the water-treatment process.

摘要

水资源的减少及其化学污染对水生环境构成风险。因此,这项工作致力于设计一种适用于水处理的磁性可回收光催化剂,即TiO₂/Fe₃O₄@g-C₃N₄复合材料。研究了不同的制备条件及其相应特性。通过XRD和DRS分析检测到具有低带隙能量的纯缺陷锐钛矿TiO₂相。证实了缺陷形成后电荷复合率较低。评估了所制备的光催化剂在太阳光下对苯酚降解的性能,结果表明在200°C/24 h水热条件下制备的TiO₂相对于完整的TiO₂具有更高的效率。将该最佳样品与Fe₃O₄@g-C₃N₄结合以促进其回收和再利用。使用XRD、拉曼和XPS工具证实了这种成功的组合。发现TiO₂/Fe₃O₄@g-C₃N₄ 2∶1配方具有最高的光活性,并且可以重复使用多达五次而效率没有明显损失。因此,精确开发的磁性光催化剂在水处理过程中具有应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cc7/11497582/121b5f27a83c/d4ra05990e-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验