Kole S J, Alexander Gareth P, Maitra Ananyo, Ramaswamy Sriram
Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, Karnataka 560 012, India.
INI, University of Cambridge, Cambridge CB3 0EH, United Kingdom.
PNAS Nexus. 2024 Sep 10;3(10):pgae398. doi: 10.1093/pnasnexus/pgae398. eCollection 2024 Oct.
Chiral active materials display odd dynamical effects in both their elastic and viscous responses. We show that the most symmetric mesophase with 2D odd elasticity in three dimensions is chiral, polar, and columnar, with 2D translational order in the plane perpendicular to the columns and no elastic restoring force for their relative sliding. We derive its hydrodynamic equations from those of a chiral active variant of model H. The most striking prediction of the odd dynamics is two distinct types of column oscillation whose frequencies do not vanish at zero wavenumber. In addition, activity leads to a buckling instability coming from the generic force-dipole active stress analogous to the mechanical Helfrich-Hurault instability in passive materials, while the chiral torque-dipole active stress fundamentally modifies the instability by the selection of helical column undulations.
手性活性材料在其弹性和粘性响应中均表现出奇特的动力学效应。我们表明,在三维空间中具有二维奇数弹性的最对称中间相是手性、极性和柱状的,在垂直于柱体的平面内具有二维平移有序性,并且柱体相对滑动时没有弹性恢复力。我们从模型H的手性活性变体的方程推导出其流体动力学方程。奇数动力学最显著的预测是两种不同类型的柱体振荡,其频率在零波数时不会消失。此外,活性会导致一种屈曲不稳定性,这种不稳定性源于与被动材料中的机械赫尔弗里希 - 于拉尔特不稳定性类似的一般力偶极活性应力,而手性扭矩偶极活性应力通过选择螺旋柱体起伏从根本上改变了这种不稳定性。