Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA.
Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
Nucleic Acids Res. 2024 Nov 27;52(21):e99. doi: 10.1093/nar/gkae915.
The OmicsFootPrint framework addresses the need for advanced multi-omics data analysis methodologies by transforming data into intuitive two-dimensional circular images and facilitating the interpretation of complex diseases. Utilizing deep neural networks and incorporating the SHapley Additive exPlanations algorithm, the framework enhances model interpretability. Tested with The Cancer Genome Atlas data, OmicsFootPrint effectively classified lung and breast cancer subtypes, achieving high area under the curve (AUC) scores-0.98 ± 0.02 for lung cancer subtype differentiation and 0.83 ± 0.07 for breast cancer PAM50 subtypes, and successfully distinguished between invasive lobular and ductal carcinomas in breast cancer, showcasing its robustness. It also demonstrated notable performance in predicting drug responses in cancer cell lines, with a median AUC of 0.74, surpassing nine existing methods. Furthermore, its effectiveness persists even with reduced training sample sizes. OmicsFootPrint marks an enhancement in multi-omics research, offering a novel, efficient and interpretable approach that contributes to a deeper understanding of disease mechanisms.
OmicsFootPrint 框架通过将数据转化为直观的二维圆形图像,并促进对复杂疾病的解释,满足了先进的多组学数据分析方法的需求。该框架利用深度神经网络并结合 SHapley Additive exPlanations 算法,增强了模型的可解释性。通过对 The Cancer Genome Atlas 数据的测试,OmicsFootPrint 有效地对肺癌和乳腺癌亚型进行了分类,实现了较高的曲线下面积 (AUC) 评分——肺癌亚型区分的 AUC 评分为 0.98±0.02,乳腺癌 PAM50 亚型的 AUC 评分为 0.83±0.07,并成功区分了乳腺癌中的浸润性小叶癌和导管癌,展示了其稳健性。它在预测癌症细胞系中的药物反应方面也表现出了显著的性能,中位数 AUC 为 0.74,超过了 9 种现有方法。此外,即使在减少训练样本量的情况下,它的效果仍然存在。OmicsFootPrint 标志着多组学研究的增强,提供了一种新颖、高效且可解释的方法,有助于更深入地了解疾病机制。