Wu Jiecheng, Chen Zhaoliang, Xiao Shunxin, Liu Genggeng, Wu Wenjie, Wang Shiping
College of Computer and Data Science, Fuzhou University, Fuzhou, 350108, China.
Department of Computer Science, Hong Kong Baptist University, Hong Kong, SAR, China.
BMC Genomics. 2024 Dec 18;25(1):1209. doi: 10.1186/s12864-024-11112-5.
Achieving precise cancer subtype classification is imperative for effective prognosis and treatment. Multi-omics studies, encompassing diverse data modalities, have emerged as powerful tools for unraveling the complexities of cancer. However, owing to the intricacies of biological data, multi-omics datasets generally show variations in data types, scales, and distributions. These intractable problems lead to challenges in exploring intact representations from heterogeneous data, which often result in inaccuracies in multi-omics information analysis.
To address the challenges of multi-omics research, our approach DeepMoIC presents a novel framework derived from deep Graph Convolutional Network (GCN). Leveraging autoencoder modules, DeepMoIC extracts compact representations from omics data and incorporates a patient similarity network through the similarity network fusion algorithm. To handle non-Euclidean data and explore high-order omics information effectively, we design a Deep GCN module with two strategies: residual connection and identity mapping. With extracted higher-order representations, our approach consistently outperforms state-of-the-art models on a pan-cancer dataset and 3 cancer subtype datasets.
The introduction of Deep GCN shows encouraging performance in terms of supervised multi-omics feature learning, offering promising insights for precision medicine in cancer research. DeepMoIC can potentially be an important tool in the field of cancer subtype classification because of its capacity to handle complex multi-omics data and produce reliable classification findings.
实现精确的癌症亚型分类对于有效的预后和治疗至关重要。多组学研究涵盖了多种数据模式,已成为揭示癌症复杂性的强大工具。然而,由于生物数据的复杂性,多组学数据集通常在数据类型、规模和分布上存在差异。这些棘手的问题导致在从异构数据中探索完整表示时面临挑战,这往往会导致多组学信息分析不准确。
为了应对多组学研究的挑战,我们的方法DeepMoIC提出了一种源自深度图卷积网络(GCN)的新颖框架。利用自动编码器模块,DeepMoIC从组学数据中提取紧凑表示,并通过相似性网络融合算法纳入患者相似性网络。为了处理非欧几里得数据并有效地探索高阶组学信息,我们设计了一个具有两种策略的深度GCN模块:残差连接和恒等映射。通过提取的高阶表示,我们的方法在泛癌数据集和3个癌症亚型数据集上始终优于现有模型。
深度GCN的引入在监督多组学特征学习方面表现出令人鼓舞的性能,为癌症研究中的精准医学提供了有前景的见解。由于其处理复杂多组学数据并产生可靠分类结果的能力,DeepMoIC可能成为癌症亚型分类领域的重要工具。