Suppr超能文献

基于碲的栅极可调谐人工光子突触的物理储层计算

Physical Reservoir Computing Using Tellurium-Based Gate-Tunable Artificial Photonic Synapses.

作者信息

Jo Hyerin, Jang Jiseong, Park Hyeon Jung, Lee Huigu, An Sung Jin, Hong Jin Pyo, Jeong Mun Seok, Oh Hongseok

机构信息

Department of Physics and Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea.

Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.

出版信息

ACS Nano. 2024 Nov 5;18(44):30761-30773. doi: 10.1021/acsnano.4c10489. Epub 2024 Oct 24.

Abstract

We report tellurium (Te) thin-film-based artificial photonic synapses and their application to physical reservoir computing (PRC). The Te-based artificial photonic synapses were fabricated by using sputtered Te thin films and spray-coated MXene (TiC) electrodes. A thorough investigation of the field-dependent persistent photoconductivity (PPC) of the Te channel revealed that the relaxation speed of the transient photocurrent depended on the gate bias. Utilizing the PPC property, the Te device served as an excellent photonic synapse under light pulse stimulus, exhibiting multiple synaptic characteristics such as excitatory postsynaptic current and paired-pulse facilitation, as well as highly linear potentiation-depression characteristics; a simulation-based study further confirmed the effectiveness of the device. Most importantly, by exploiting the nonlinear and fading memory characteristics of the Te photonic synapse, we demonstrate two advanced examples of PRC. In classifying handwritten digits, our system carried out successful digit recognition without binarization or another simplification process with reduced computational cost compared to conventional systems. To solve second-order nonlinear equations, we introduce the strategy of utilizing historical nodes. The combination of historical nodes and the gate-tunable responses of the photonic synapses, which provide an enriched reservoir state, yielded excellent prediction accuracy. Overall, this work will offer an understanding of Te-based optoelectronic devices and their synergetic integration with neuromorphic devices and PRC.

摘要

我们报道了基于碲(Te)薄膜的人工光子突触及其在物理水库计算(PRC)中的应用。基于碲的人工光子突触是通过溅射碲薄膜和喷涂MXene(TiC)电极制备的。对碲通道的场依赖持久光电导(PPC)进行的深入研究表明,瞬态光电流的弛豫速度取决于栅极偏置。利用PPC特性,碲器件在光脉冲刺激下可作为优异的光子突触,展现出多种突触特性,如兴奋性突触后电流和双脉冲易化,以及高度线性的增强-抑制特性;基于模拟的研究进一步证实了该器件的有效性。最重要的是,通过利用碲光子突触的非线性和衰退记忆特性,我们展示了PRC的两个先进示例。在对手写数字进行分类时,我们的系统成功地进行了数字识别,无需二值化或其他简化过程,与传统系统相比,计算成本降低。为了解决二阶非线性方程,我们引入了利用历史节点的策略。历史节点与光子突触的栅极可调响应相结合,提供了丰富的水库状态,产生了优异的预测精度。总体而言,这项工作将有助于理解基于碲的光电器件及其与神经形态器件和PRC的协同集成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验