Du Shengyi, Guo Jin, Huang Donghai, Liu Yong, Zhang Xin, Lu Shanhong
Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan, 410008, The People's Republic of China.
Otolaryngology Major Disease Research Key Laboratory of Hunan Province, No. 87 Xiangya Road, Changsha, Hunan, 410008, The People's Republic of China.
Eur Arch Otorhinolaryngol. 2025 Jan;282(1):351-360. doi: 10.1007/s00405-024-09049-2. Epub 2024 Oct 24.
Laryngoscopy is routinely used for suspicious vocal cord lesions with limited performance. Accumulated studies have demonstrated the bright prospect of deep learning in processing medical imaging. In this study, we perform a systematic review and meta-analysis to investigate diagnostic utility of deep learning in laryngoscopy.
The study was performed according to the Primary Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. We comprehensively retrieved articles from the PubMed, Scopus, Embase, and Web of Science up to July 14, 2024. Eligible studies with application of deep learning algorithm in laryngoscopy were assessed and enrolled by two independent investigators. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and diagnostic odds ratio with 95% confidence intervals (CIs) were calculated using a random effects model.
We retained 9 eligible studies adding up to 106,175 endoscopic images for the meta-analysis. The pooled sensitivity and specificity to diagnose laryngeal cancer were 0.95(95% CI: 0.85-0.98) and 0.96 (95% CI: 0.91-0.98). The area under the curve of deep learning was 0.99 (95%CI: 0.97-0.99).
Deep learning demonstrated excellent diagnostic efficacy in assessing laryngeal cancer with laryngoscope images in current studies, which manifests its potential of aiding endoscopist for laryngeal cancer diagnosis and clinical decision making.
喉镜检查常用于诊断可疑声带病变,但效能有限。越来越多的研究表明深度学习在处理医学影像方面前景广阔。在本研究中,我们进行了一项系统评价和荟萃分析,以探讨深度学习在喉镜检查中的诊断效用。
本研究按照系统评价和荟萃分析的首选报告项目(PRISMA)指南进行。我们全面检索了截至2024年7月14日的PubMed、Scopus、Embase和Web of Science上的文章。由两名独立研究人员评估并纳入在喉镜检查中应用深度学习算法的合格研究。使用随机效应模型计算合并敏感度、特异度、阳性似然比、阴性似然比和诊断比值比及其95%置信区间(CI)。
我们保留了9项合格研究,总计106,175张内镜图像用于荟萃分析。诊断喉癌的合并敏感度和特异度分别为0.95(95%CI:0.85 - 0.98)和0.96(95%CI:0.91 - 0.98)。深度学习的曲线下面积为0.99(95%CI:0.97 - 0.99)。
在当前研究中,深度学习在利用喉镜图像评估喉癌方面显示出优异的诊断效能,这表明其在辅助内镜医师进行喉癌诊断和临床决策方面具有潜力。