Mozneb Maedeh, Moses Jemima, Arzt Madelyn, Escopete Sean, Sharma Arun
Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California.
Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California.
Curr Protoc. 2024 Oct;4(10):e70030. doi: 10.1002/cpz1.70030.
Calcium plays a pivotal role in the excitation-contraction coupling process in cardiomyocytes, a critical multi-parametric event leading to rhythmic contraction. Over the past few decades, calcium signaling in cardiomyocytes has been extensively studied in cardiovascular sciences. However, a standard methodology is needed not only to trace the calcium within cells but also to remove signal processing biases and to accurately interpret the features of calcium transient signals in relation to cardiomyocyte electrophysiology. This article outlines the use of genetically encoded calcium indicator (GCaMP) human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to record calcium transients. These cells express a green fluorescent signal when calcium binds to intracellular calmodulin, a key regulator of calcium signaling. The extraction and processing of calcium transient waveforms are performed using ImageJ and MATLAB software. Key features of these waveforms are then identified and categorized based on their physiological relevance to cardiomyocyte function. Additionally, this work includes a Support Protocol for the successful replating of cardiomyocytes onto non-traditional culture platforms, such as metallic sensors and polymer-based substrates, to facilitate data multiplexing. The three Basic Protocols outlined here provide a comprehensive approach for maintaining, expanding, and differentiating the GCaMP hiPSCs, video recording of calcium transients, and the subsequent signal extraction, preprocessing, analysis, and data visualization. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Maintenance, expansion, and differentiation of genetically encoded calcium indicator hiPSCs Support Protocol: Replating GCaMP hiPSC-CMs for stimulation and multielectrode array studies Basic Protocol 2: Video recording from calcium transients of GCaMP hiPSC-CMs Basic Protocol 3: Signal extraction, preprocessing, analysis, and data visualization.
钙在心肌细胞的兴奋-收缩偶联过程中起着关键作用,这是一个导致节律性收缩的关键多参数事件。在过去的几十年中,钙信号在心肌细胞中的作用在心血管科学中得到了广泛的研究。然而,不仅需要一种标准的方法来追踪细胞内的钙,还需要消除信号处理偏差,并准确解释钙瞬变信号与心肌细胞电生理学的关系。本文概述了使用基因编码钙指示剂(GCaMP)人类诱导多能干细胞衍生的心肌细胞(hiPSC-CMs)来记录钙瞬变。当钙与细胞内钙调蛋白结合时,这些细胞会表达绿色荧光信号,钙调蛋白是钙信号的关键调节剂。使用 ImageJ 和 MATLAB 软件提取和处理钙瞬变波形。然后根据其与心肌细胞功能的生理相关性,对这些波形的关键特征进行识别和分类。此外,本工作还包括一个支持方案,用于将心肌细胞成功地再接种到非传统的培养平台上,如金属传感器和聚合物基底上,以促进数据复用。这里概述的三个基本方案提供了一种全面的方法,用于维持、扩展和分化 GCaMP hiPSC、钙瞬变的视频记录,以及随后的信号提取、预处理、分析和数据可视化。© 2024 作者。当前由 Wiley 期刊出版公司出版的基本方案。基本方案 1:基因编码钙指示剂 hiPSC 的维持、扩展和分化 支持方案:用于刺激和多电极阵列研究的 GCaMP hiPSC-CMs 再接种 基本方案 2:GCaMP hiPSC-CMs 钙瞬变的视频记录 基本方案 3:信号提取、预处理、分析和数据可视化。