Cowie Megan, Constantinou Procopios C, Curson Neil J, Stock Taylor J Z, Grütter Peter
Department of Physics, McGill University, Montréal, QC H3A 2T8, Canada.
Department of Physics and Astronomy, London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom.
Proc Natl Acad Sci U S A. 2024 Oct 29;121(44):e2404456121. doi: 10.1073/pnas.2404456121. Epub 2024 Oct 24.
We use electrostatic force microscopy to spatially resolve random telegraph noise at the Si/SiO interface. Our measurements demonstrate that two-state fluctuations are localized at interfacial traps, with bias-dependent rates and amplitudes. These two-level systems lead to correlated carrier number and mobility fluctuations with a range of characteristic timescales; taken together as an ensemble, they give rise to a [Formula: see text] power spectral trend. Such individual defect fluctuations at the Si/SiO interface impair the performance and reliability of nanoscale semiconductor devices and will be a significant source of noise in semiconductor-based quantum sensors and computers. The fluctuations measured here are associated with a four-fold competition of rates, including slow two-state switching on the order of seconds and, in one state, fast switching on the order of nanoseconds which is associated with energy loss.
我们使用静电力显微镜在空间上分辨Si/SiO界面处的随机电报噪声。我们的测量表明,双态波动定位于界面陷阱处,其速率和幅度与偏置有关。这些两能级系统导致载流子数和迁移率的波动具有一系列特征时间尺度;作为一个整体来看,它们产生了一个[公式:见正文]功率谱趋势。Si/SiO界面处这种单个缺陷的波动会损害纳米级半导体器件的性能和可靠性,并且将成为基于半导体的量子传感器和计算机中噪声的一个重要来源。这里测量到的波动与速率的四重竞争相关,包括大约几秒的缓慢双态切换,以及在一种状态下与能量损失相关的大约纳秒级的快速切换。