Suppr超能文献

利用可解释人工智能进行患者与临床试验匹配:一项使用 I 期肿瘤学试验的概念验证试点研究。

Harnessing explainable artificial intelligence for patient-to-clinical-trial matching: A proof-of-concept pilot study using phase I oncology trials.

机构信息

Department of Computer Science, University of New Hampshire, Durham, New Hampshire, United States of America.

Jordan University of Science and Technology, Irbid, Jordan.

出版信息

PLoS One. 2024 Oct 24;19(10):e0311510. doi: 10.1371/journal.pone.0311510. eCollection 2024.

Abstract

This study aims to develop explainable AI methods for matching patients with phase 1 oncology clinical trials using Natural Language Processing (NLP) techniques to address challenges in patient recruitment for improved efficiency in drug development. A prototype system based on modern NLP techniques has been developed to match patient records with phase 1 oncology clinical trial protocols. Four criteria are considered for the matching: cancer type, performance status, genetic mutation, and measurable disease. The system outputs a summary matching score along with explanations of the evidence. The outputs of the AI system were evaluated against the ground truth matching results provided by the domain expert on a dataset of twelve synthesized dummy patient records and six clinical trial protocols. The system achieved a precision of 73.68%, sensitivity/recall of 56%, accuracy of 77.78%, and specificity of 89.36%. Further investigation into the misclassified cases indicated that ambiguity of abbreviation and misunderstanding of context are significant contributors to errors. The system found evidence of no matching for all false positive cases. To the best of our knowledge, no system in the public domain currently deploys an explainable AI-based approach to identify optimal patients for phase 1 oncology trials. This initial attempt to develop an AI system for patients and clinical trial matching in the context of phase 1 oncology trials showed promising results that are set to increase efficiency without sacrificing quality in patient-trial matching.

摘要

本研究旨在开发使用自然语言处理 (NLP) 技术的可解释人工智能方法,以匹配参加肿瘤学 I 期临床试验的患者,从而解决患者招募方面的挑战,提高药物开发效率。我们已经开发了一个基于现代 NLP 技术的原型系统,用于将患者记录与肿瘤学 I 期临床试验方案进行匹配。匹配考虑了四个标准:癌症类型、表现状态、基因突变和可测量疾病。系统会输出一个匹配得分,并附有证据解释。我们在 12 个合成虚拟患者记录和 6 个临床试验方案的数据集上,根据领域专家提供的真实匹配结果来评估人工智能系统的输出。该系统在精度、灵敏度/召回率、准确性和特异性方面的表现分别为 73.68%、56%、77.78%和 89.36%。对错误分类的案例进行进一步研究表明,缩写的模糊性和对上下文的误解是导致错误的主要原因。对于所有假阳性病例,系统都没有找到匹配证据。据我们所知,目前尚无公共领域的系统采用基于可解释人工智能的方法来为肿瘤学 I 期临床试验确定最佳患者。在肿瘤学 I 期临床试验背景下,首次尝试开发用于患者和临床试验匹配的人工智能系统,结果显示出很有前景的效果,有望在不牺牲患者与试验匹配质量的前提下提高效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16ed/11500892/b3730d277ec8/pone.0311510.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验