Ocana Alberto, Pandiella Atanasio, Privat Cristian, Bravo Iván, Luengo-Oroz Miguel, Amir Eitan, Gyorffy Balazs
Experimental Therapeutics in Cancer Unit, Medical Oncology Department, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos and CIBERONC, Madrid, Spain.
INTHEOS-CEU-START Catedra, Facultad de Medicina, Universidad CEU San Pablo, 28668 Boadilla del Monte, Madrid, Spain.
Biomark Res. 2025 Mar 14;13(1):45. doi: 10.1186/s40364-025-00758-2.
Artificial intelligence (AI) can transform drug discovery and early drug development by addressing inefficiencies in traditional methods, which often face high costs, long timelines, and low success rates. In this review we provide an overview of how to integrate AI to the current drug discovery and development process, as it can enhance activities like target identification, drug discovery, and early clinical development. Through multiomics data analysis and network-based approaches, AI can help to identify novel oncogenic vulnerabilities and key therapeutic targets. AI models, such as AlphaFold, predict protein structures with high accuracy, aiding druggability assessments and structure-based drug design. AI also facilitates virtual screening and de novo drug design, creating optimized molecular structures for specific biological properties. In early clinical development, AI supports patient recruitment by analyzing electronic health records and improves trial design through predictive modeling, protocol optimization, and adaptive strategies. Innovations like synthetic control arms and digital twins can reduce logistical and ethical challenges by simulating outcomes using real-world or virtual patient data. Despite these advancements, limitations remain. AI models may be biased if trained on unrepresentative datasets, and reliance on historical or synthetic data can lead to overfitting or lack generalizability. Ethical and regulatory issues, such as data privacy, also challenge the implementation of AI. In conclusion, in this review we provide a comprehensive overview about how to integrate AI into current processes. These efforts, although they will demand collaboration between professionals, and robust data quality, have a transformative potential to accelerate drug development.
人工智能(AI)可以通过解决传统方法中的低效问题来变革药物发现和早期药物开发,传统方法往往面临高成本、长周期和低成功率的问题。在这篇综述中,我们概述了如何将人工智能整合到当前的药物发现和开发过程中,因为它可以增强靶点识别、药物发现和早期临床开发等活动。通过多组学数据分析和基于网络的方法,人工智能可以帮助识别新的致癌弱点和关键治疗靶点。像AlphaFold这样的人工智能模型能够高精度地预测蛋白质结构,有助于进行成药潜力评估和基于结构的药物设计。人工智能还促进虚拟筛选和从头药物设计,为特定生物学特性创建优化的分子结构。在早期临床开发中,人工智能通过分析电子健康记录支持患者招募,并通过预测建模、方案优化和适应性策略改进试验设计。合成对照臂和数字孪生等创新可以通过使用真实世界或虚拟患者数据模拟结果来减少后勤和伦理挑战。尽管取得了这些进展,但仍存在局限性。如果在不具代表性的数据集上进行训练,人工智能模型可能会有偏差,而对历史数据或合成数据的依赖可能导致过拟合或缺乏通用性。数据隐私等伦理和监管问题也对人工智能的实施构成挑战。总之,在这篇综述中,我们全面概述了如何将人工智能整合到当前流程中。这些努力虽然需要专业人员之间的合作以及可靠的数据质量,但具有加速药物开发的变革潜力。