Suppr超能文献

韩国航海领域的深度学习创新:利用 AIS 数据增强船舶轨迹预测。

Deep learning innovations in South Korean maritime navigation: Enhancing vessel trajectories prediction with AIS data.

机构信息

Department of Computer Engineering, Chungnam National University, Daejeon, South Korea.

Department of Environmental IT Engineering, Chungnam National University, Daejeon, South Korea.

出版信息

PLoS One. 2024 Oct 24;19(10):e0310385. doi: 10.1371/journal.pone.0310385. eCollection 2024.

Abstract

Predicting ship trajectories can effectively forecast navigation trends and enable the orderly management of ships, which holds immense significance for maritime traffic safety. This paper introduces a novel ship trajectory prediction method utilizing Convolutional Neural Network (CNN), Deep Neural Network (DNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). Our research comprises two main parts: the first involves preprocessing the large raw AIS dataset to extract features, and the second focuses on trajectory prediction. We emphasize a specialized preprocessing approach tailored for AIS data, including advanced filtering techniques to remove outliers and erroneous data points, and the incorporation of contextual information such as environmental conditions and ship-specific characteristics. Our deep learning models utilize trajectory data sourced from the Automatic Identification System (AIS) to train and learn regular patterns within ship trajectory data, enabling them to predict trajectories for the next hour. Experimental results reveal that CNN has substantially reduced the Mean Absolute Error (MAE) and Mean Square Error (MSE) of ship trajectory prediction, showcasing superior performance compared to other deep learning algorithms. Additionally, a comparative analysis with other models-Recurrent Neural Network (RNN), GRU, LSTM, and DBS-LSTM-using metrics such as Average Displacement Error (ADE), Final Displacement Error (FDE), and Non-Linear ADE (NL-ADE), demonstrates our method's robustness and accuracy. Our approach not only cleans the data but also enriches it, providing a robust foundation for subsequent deep learning applications in ship trajectory prediction. This improvement effectively enhances the accuracy of trajectory prediction, promising advancements in maritime traffic safety.

摘要

船舶轨迹预测可有效预测航行趋势,实现船舶的有序管理,对海上交通安全具有重要意义。本文提出了一种利用卷积神经网络(CNN)、深度神经网络(DNN)、长短时记忆(LSTM)和门控循环单元(GRU)的船舶轨迹预测新方法。我们的研究包括两部分:第一部分涉及预处理大型原始 AIS 数据集以提取特征,第二部分侧重于轨迹预测。我们强调了一种专门针对 AIS 数据的预处理方法,包括先进的滤波技术来去除异常值和错误数据点,以及合并环境条件和船舶特定特征等上下文信息。我们的深度学习模型利用来自自动识别系统(AIS)的轨迹数据,对船舶轨迹数据中的规则模式进行训练和学习,从而能够预测未来 1 小时的轨迹。实验结果表明,与其他深度学习算法相比,CNN 大大降低了船舶轨迹预测的平均绝对误差(MAE)和均方误差(MSE),表现出卓越的性能。此外,使用平均位移误差(ADE)、最终位移误差(FDE)和非线性 ADE(NL-ADE)等指标与其他模型(循环神经网络(RNN)、GRU、LSTM 和 DBS-LSTM)进行比较分析,证明了我们方法的鲁棒性和准确性。我们的方法不仅可以清理数据,还可以丰富数据,为船舶轨迹预测的后续深度学习应用提供稳健的基础。这种改进有效地提高了轨迹预测的准确性,有望提高海上交通安全水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0952/11500964/964f704eb6ed/pone.0310385.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验