埃博拉疫情期间的患者分诊快速决策算法。

Rapid Decision Algorithm for Patient Triage during Ebola Outbreaks.

出版信息

Emerg Infect Dis. 2024 Nov;30(11):1-11. doi: 10.3201/eid3011.231650.

Abstract

The low specificity of Ebola virus disease clinical signs increases the risk for nosocomial transmission to patients and healthcare workers during outbreaks. Reducing this risk requires identifying patients with a high likelihood of Ebola virus infection. Analyses of retrospective data from patients suspected of having Ebola virus infection identified 13 strong predictors and time from disease onset as constituents of a prediction score for Ebola virus disease. We also noted 4 highly predictive variables that could distinguish patients at high risk for infection, independent of their scores. External validation of this algorithm on retrospective data revealed the probability of infection continuously increased with the score.

摘要

埃博拉病毒病临床症状的特异性较低,增加了暴发期间医院内传播给患者和医护人员的风险。降低这种风险需要识别出极有可能感染埃博拉病毒的患者。对疑似埃博拉病毒感染患者的回顾性数据分析确定了 13 个强预测因子,以及疾病发作后的时间是埃博拉病毒病预测评分的组成部分。我们还注意到 4 个高度预测性变量,这些变量可以区分感染风险高的患者,而与他们的评分无关。对该算法的回顾性数据的外部验证显示,感染的概率随着评分的增加而连续增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84e5/11521189/f73ee2a2d292/23-1650-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索