Chen Cheng, Liu Yang, Wang Chenghui, Guo Jianzhong, Lin Shuyu
Shaanxi Key Laboratory of Ultrasonics, Institute of Applied Acoustics, Shaanxi Normal University, Xi'an 710119, China.
Shaanxi Key Laboratory of Ultrasonics, Institute of Applied Acoustics, Shaanxi Normal University, Xi'an 710119, China.
Ultrason Sonochem. 2024 Dec;111:107106. doi: 10.1016/j.ultsonch.2024.107106. Epub 2024 Oct 18.
Developing innovative sonoreactors to enhance acoustic processing efficiency holds immense importance in the field of sonochemistry. Traditional immersed sonoreactors (TISs) mainly produce cavitation at the probe tip, with a relatively weak cavitation around the probe, resulting in posing challenges for high-efficiency cavitation treatment. Here we propose an acoustic black hole immersed sonoreactor (ABHIS) in longitudinal-flexural coupled vibration, enabling high-efficiency cavitation treatment by unleashing the cavitation potential of the probe. The symmetrical structure of the probe is altered to introduce a coupling of flexural vibration mode, and an acoustic black hole (ABH) profile is integrated to further enhance both flexural wave number and amplitude. In this paper, we present a systematic theoretical design method for ABHIS and compare its performance with TIS using finite element method (FEM). An ABHIS prototype is fabricated and subjected to experimental tests and cavitation observation. The results demonstrate that our theoretical analysis model accurately predicts the frequency characteristics of ABHIS. The proposed ABHIS exhibits satisfactory dynamic characteristics, with significantly increased vibration displacement and acoustic radiation ability compared to TIS. Importantly, the ABH design significantly expands ultrasonic cavitation regions and enhances acoustic radiation intensity of ABHIS, resulting in a substantial improvement in acoustic processing efficiency.
开发创新的声化学反应器以提高声处理效率在声化学领域具有极其重要的意义。传统的浸入式声化学反应器(TISs)主要在探头尖端产生空化,探头周围的空化相对较弱,这给高效空化处理带来了挑战。在此,我们提出一种纵向 - 弯曲耦合振动的声学黑洞浸入式声化学反应器(ABHIS),通过释放探头的空化潜力实现高效空化处理。改变探头的对称结构以引入弯曲振动模式的耦合,并集成声学黑洞(ABH)轮廓以进一步提高弯曲波数和振幅。本文提出了一种针对ABHIS的系统理论设计方法,并使用有限元方法(FEM)将其性能与TIS进行比较。制造了一个ABHIS原型并进行了实验测试和空化观察。结果表明,我们的理论分析模型准确地预测了ABHIS的频率特性。所提出的ABHIS表现出令人满意的动态特性,与TIS相比,振动位移和声学辐射能力显著增加。重要的是,ABH设计显著扩展了超声空化区域并增强了ABHIS的声学辐射强度,从而使声处理效率得到大幅提高。