Schieppati Dalma, Mohan Mood, Blais Bruno, Fattahi Kobra, Patience Gregory S, Simmons Blake A, Singh Seema, Boffito Daria C
Department of Chemical Engineering, École Polytechnique Montréal, C.P. 6079, Succ. CV, Montréal H3C 3A7, Québec, Canada.
Deconstruction Division, Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA; Bioscience Division and Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
Ultrason Sonochem. 2024 Jan;102:106721. doi: 10.1016/j.ultsonch.2023.106721. Epub 2023 Dec 13.
Most ultrasound-based processes root in empirical approaches. Because nearly all advances have been conducted in aqueous systems, there exists a paucity of information on sonoprocessing in other solvents, particularly ionic liquids (ILs). In this work, we modelled an ultrasonic horn-type sonoreactor and investigated the effects of ultrasound power, sonotrode immersion depth, and solvent's thermodynamic properties on acoustic cavitation in nine imidazolium-based and three pyrrolidinium-based ILs. The model accounts for bubbles, acoustic impedance mismatch at interfaces, and treats the ILs as incompressible, Newtonian, and saturated with argon. Following a statistical analysis of the simulation results, we determined that viscosity and ultrasound input power are the most significant variables affecting the intensity of the acoustic pressure field (P), the volume of cavitation zones (V), and the magnitude of the maximum acoustic streaming surface velocity (u). V and u increase with the increase of ultrasound input power and the decrease in viscosity, whereas the magnitude of negative P decreases as ultrasound power and viscosity increase. Probe immersion depth positively correlates with V, but its impact on P and u is insignificant. 1-alkyl-3-methylimidazolium-based ILs yielded the largest V and the fastest acoustic jets - 0.77 cm and 24.4 m s for 1-ethyl-3-methylimidazolium chloride at 60 W. 1-methyl-3-(3-sulfopropyl)-imidazolium-based ILs generated the smallest V and lowest u - 0.17 cm and 1.7 m s for 1-methyl-3-(3-sulfopropyl)-imidazolium p-toluene sulfonate at 20 W. Sonochemiluminescence experiments validated the model.
大多数基于超声的过程都源于经验方法。由于几乎所有的进展都是在水体系中取得的,因此关于在其他溶剂,特别是离子液体(ILs)中进行声化学处理的信息很少。在这项工作中,我们对超声喇叭型声化学反应器进行了建模,并研究了超声功率、超声探头浸入深度和溶剂的热力学性质对9种咪唑基和3种吡咯烷鎓基离子液体中声空化的影响。该模型考虑了气泡、界面处的声阻抗失配,并将离子液体视为不可压缩、牛顿流体且充满氩气。通过对模拟结果的统计分析,我们确定粘度和超声输入功率是影响声压场强度(P)、空化区体积(V)和最大声流表面速度(u)大小的最重要变量。V和u随着超声输入功率的增加和粘度的降低而增加,而负P值的大小则随着超声功率和粘度的增加而减小。探头浸入深度与V呈正相关,但其对P和u的影响不显著。基于1-烷基-3-甲基咪唑鎓的离子液体产生了最大的V和最快的声流——60 W时,1-乙基-3-甲基咪唑鎓氯化物对应的V为0.77 cm,u为24.4 m/s。基于1-甲基-3-(3-磺丙基)咪唑鎓的离子液体产生了最小的V和最低的u——20 W时,1-甲基-3-(3-磺丙基)咪唑鎓对甲苯磺酸盐对应的V为0.17 cm,u为1.7 m/s。声化学发光实验验证了该模型。