Olkowicz Mariola, Karas Agnieszka, Berkowicz Piotr, Kaczara Patrycja, Jasztal Agnieszka, Kurylowicz Zuzanna, Fedak Filip, Rosales-Solano Hernando, Roy Kanchan Sinha, Kij Agnieszka, Buczek Elzbieta, Pawliszyn Janusz, Chlopicki Stefan
Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland.
Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, Krakow 30-348, Poland.
Pharmacol Res. 2024 Dec;210:107478. doi: 10.1016/j.phrs.2024.107478. Epub 2024 Oct 22.
Mitochondrial dysfunction and 12-lipoxygenase (ALOX12)-derived 12(S)-HETE production have been associated with vascular inflammation and the pathogenesis of atherosclerosis. However, the role of ALOX12 in regulating vascular energy metabolism in vascular inflammation has not been studied to date. Using mitochondrial and glycolysis functional profiling with the Seahorse extracellular flux analyzer, metabolipidomics, and proteomic analysis (LC-MS/MS), we characterized alterations in vascular energy metabolism in 2- and 6-month-old ApoE/LDLR vs. control C57BL/6 mice. We identified that aorta of 6-month-old ApoE/LDLR mice displayed compromised mitochondrial metabolism manifested by the reduced expression of mitochondrial enzymes, impaired mitochondrial respiration, and consequently diminished respiratory reserve capacity. An increased flux through the glycolysis/lactate shuttle, the hexosamine biosynthetic pathway (HBP), and the pentose phosphate pathway (PPP) was also recognized. Interestingly, ALOX12-12-HETE was the most upregulated axis in eicosanoid metabolism and histological examinations indicated that ApoE/LDLR mice showed increased aortic expression of ALOX12, particularly in early atherosclerotic plaque areas. Remarkably, the joint blocking of ALOX12 and activation of AMPK, but not AMPK activation alone, resulted in the reprogramming of vascular metabolism, with improved mitochondrial respiration and suppressed auxiliary pathways (HBP, PPP, itaconate shunt). In conclusion, excessive activation of the ALOX12-12-HETE pathway in vascular inflammation in early atherosclerosis inhibits AMPK-dependent regulation of vascular metabolism. Consequently, ALOX12 may represent a novel target to boost impaired vascular mitochondrial function in pro-atherosclerotic vascular inflammation.
线粒体功能障碍和12-脂氧合酶(ALOX12)衍生的12(S)-HETE生成与血管炎症和动脉粥样硬化的发病机制有关。然而,迄今为止,ALOX12在血管炎症中调节血管能量代谢的作用尚未得到研究。我们使用海马细胞外流量分析仪进行线粒体和糖酵解功能分析、代谢脂质组学和蛋白质组分析(LC-MS/MS),对2月龄和6月龄的载脂蛋白E/低密度脂蛋白受体(ApoE/LDLR)小鼠与对照C57BL/6小鼠的血管能量代谢变化进行了表征。我们发现,6月龄ApoE/LDLR小鼠的主动脉显示出线粒体代谢受损,表现为线粒体酶表达降低、线粒体呼吸受损,进而导致呼吸储备能力下降。还发现通过糖酵解/乳酸穿梭、己糖胺生物合成途径(HBP)和磷酸戊糖途径(PPP)的通量增加。有趣的是,ALOX12-12-HETE是类花生酸代谢中上调最为明显的轴,组织学检查表明,ApoE/LDLR小鼠主动脉中ALOX12的表达增加,特别是在早期动脉粥样硬化斑块区域。值得注意的是,联合阻断ALOX12并激活AMPK,而非单独激活AMPK,导致血管代谢重编程,线粒体呼吸改善,辅助途径(HBP、PPP、衣康酸分流)受到抑制。总之,早期动脉粥样硬化血管炎症中ALOX12-12-HETE途径的过度激活抑制了AMPK依赖的血管代谢调节。因此,ALOX12可能是促进动脉粥样硬化血管炎症中受损血管线粒体功能的新靶点。