National Heart and Lung Institute, Imperial College London, London, UK.
Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
Cardiovasc Res. 2021 Apr 23;117(5):1295-1308. doi: 10.1093/cvr/cvaa171.
Atherosclerotic vascular disease has an inflammatory pathogenesis. Heme from intraplaque haemorrhage may drive a protective and pro-resolving macrophage M2-like phenotype, Mhem, via AMPK and activating transcription factor 1 (ATF1). The antidiabetic drug metformin may also activate AMPK-dependent signalling. Hypothesis: Metformin systematically induces atheroprotective genes in macrophages via AMPK and ATF1, thereby suppresses atherogenesis.
Normoglycaemic Ldlr-/- hyperlipidaemic mice were treated with oral metformin, which profoundly suppressed atherosclerotic lesion development (P < 5 × 10-11). Bone marrow transplantation from AMPK-deficient mice demonstrated that metformin-related atheroprotection required haematopoietic AMPK [analysis of variance (ANOVA), P < 0.03]. Metformin at a clinically relevant concentration (10 μM) evoked AMPK-dependent and ATF1-dependent increases in Hmox1, Nr1h2 (Lxrb), Abca1, Apoe, Igf1, and Pdgf, increases in several M2-markers and decreases in Nos2, in murine bone marrow macrophages. Similar effects were seen in human blood-derived macrophages, in which metformin-induced protective genes and M2-like genes, suppressible by si-ATF1-mediated knockdown. Microarray analysis comparing metformin with heme in human macrophages indicated that the transcriptomic effects of metformin were related to those of heme, but not identical. Metformin-induced lesional macrophage expression of p-AMPK, p-ATF1, and downstream M2-like protective effects.
Metformin activates a conserved AMPK-ATF1-M2-like pathway in mouse and human macrophages, and results in highly suppressed atherogenesis in hyperlipidaemic mice via haematopoietic AMPK.
动脉粥样硬化性血管疾病具有炎症发病机制。斑块内出血的血红素可能通过 AMPK 和激活转录因子 1(ATF1)驱动保护性和促解决的巨噬细胞 M2 样表型,Mhem。抗糖尿病药物二甲双胍也可能激活 AMPK 依赖性信号转导。假设:二甲双胍通过 AMPK 和 ATF1 系统地上调巨噬细胞中的保护性基因,从而抑制动脉粥样硬化形成。
给予正常血糖的 Ldlr-/-高脂血症小鼠口服二甲双胍,可显著抑制动脉粥样硬化病变的发展(P < 5 × 10-11)。来自 AMPK 缺陷小鼠的骨髓移植表明,与二甲双胍相关的动脉粥样硬化保护作用需要造血 AMPK [方差分析(ANOVA),P < 0.03]。在临床相关浓度(10 μM)下,二甲双胍可引起 AMPK 依赖性和 ATF1 依赖性的 Hmox1、Nr1h2(Lxrb)、Abca1、Apoe、Igf1 和 Pdgf 增加,几种 M2 标志物增加,Nos2 减少,在小鼠骨髓巨噬细胞中。在人类血液衍生的巨噬细胞中也观察到类似的效果,其中二甲双胍诱导的保护性基因和 M2 样基因可被 si-ATF1 介导的敲低抑制。将二甲双胍与人类巨噬细胞中的血红素进行比较的微阵列分析表明,二甲双胍的转录组效应与血红素有关,但不完全相同。二甲双胍诱导的病变巨噬细胞中 p-AMPK、p-ATF1 和下游 M2 样保护性作用的表达。
二甲双胍激活了小鼠和人类巨噬细胞中保守的 AMPK-ATF1-M2 样途径,并通过造血 AMPK 导致高脂血症小鼠的动脉粥样硬化形成得到高度抑制。