Suppr超能文献

利用半监督学习和滤波提高近红外 fNIRS 信号的分类准确性。

Enhancing classification accuracy of HRF signals in fNIRS using semi-supervised learning and filtering.

机构信息

Department of Electrical Engineering, National Central University, Taoyuan City, Taiwan TOC; Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City, Taiwan ROC.

Department of Electrical Engineering, National Central University, Taoyuan City, Taiwan TOC.

出版信息

Prog Brain Res. 2024;290:83-104. doi: 10.1016/bs.pbr.2024.05.009. Epub 2024 May 31.

Abstract

This paper introduces a novel approach to enhance the classification accuracy of hemodynamic response function (HRF) signals acquired through functional near-infrared spectroscopy (fNIRS). Leveraging a semi-supervised learning (SSL) framework alongside a filtering technique, the study preprocesses HRF data effectively before applying the SSL algorithm. Collected from the prefrontal cortex, HRF signals capture variations in oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb) levels in response to odor stimuli and air state. Training the classification model on a dataset containing filtered and feature-extracted HRF signals led to significant improvements in classification accuracy. By comparing the algorithm's performance before and after employing the proposed filtering technique, the study provides compelling evidence of its effectiveness. These findings hold promise for advancing functional brain imaging research and cognitive studies, facilitating a deeper understanding of brain responses across various experimental contexts.

摘要

本文提出了一种新方法,可提高通过功能近红外光谱(fNIRS)获得的血流动力学响应函数(HRF)信号的分类准确性。该研究利用半监督学习(SSL)框架和过滤技术,在应用 SSL 算法之前有效地预处理 HRF 数据。从前额叶皮层采集的 HRF 信号,用于捕捉对气味刺激和空气状态的反应中氧合血红蛋白(oxyHb)和脱氧血红蛋白(deoxyHb)水平的变化。在包含过滤和特征提取 HRF 信号的数据集上训练分类模型,导致分类准确性显著提高。通过比较在使用所提出的过滤技术前后算法的性能,该研究提供了其有效性的有力证据。这些发现有望推动功能脑成像研究和认知研究的发展,促进在各种实验环境下对大脑反应的深入理解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验