Department of Electrical Engineering, National Central University, Taoyuan City, Taiwan TOC; Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City, Taiwan ROC.
Department of Electrical Engineering, National Central University, Taoyuan City, Taiwan TOC.
Prog Brain Res. 2024;290:83-104. doi: 10.1016/bs.pbr.2024.05.009. Epub 2024 May 31.
This paper introduces a novel approach to enhance the classification accuracy of hemodynamic response function (HRF) signals acquired through functional near-infrared spectroscopy (fNIRS). Leveraging a semi-supervised learning (SSL) framework alongside a filtering technique, the study preprocesses HRF data effectively before applying the SSL algorithm. Collected from the prefrontal cortex, HRF signals capture variations in oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb) levels in response to odor stimuli and air state. Training the classification model on a dataset containing filtered and feature-extracted HRF signals led to significant improvements in classification accuracy. By comparing the algorithm's performance before and after employing the proposed filtering technique, the study provides compelling evidence of its effectiveness. These findings hold promise for advancing functional brain imaging research and cognitive studies, facilitating a deeper understanding of brain responses across various experimental contexts.
本文提出了一种新方法,可提高通过功能近红外光谱(fNIRS)获得的血流动力学响应函数(HRF)信号的分类准确性。该研究利用半监督学习(SSL)框架和过滤技术,在应用 SSL 算法之前有效地预处理 HRF 数据。从前额叶皮层采集的 HRF 信号,用于捕捉对气味刺激和空气状态的反应中氧合血红蛋白(oxyHb)和脱氧血红蛋白(deoxyHb)水平的变化。在包含过滤和特征提取 HRF 信号的数据集上训练分类模型,导致分类准确性显著提高。通过比较在使用所提出的过滤技术前后算法的性能,该研究提供了其有效性的有力证据。这些发现有望推动功能脑成像研究和认知研究的发展,促进在各种实验环境下对大脑反应的深入理解。