Li Guanyu, Weng Tingwen, Sun Pengcheng, Li Zehang, Ding Daixin, Guan Shaofeng, Han Wenzheng, Gan Qian, Li Ming, Qi Lin, Li Cheng, Chen Yang, Zhang Liang, Li Tianqi, Chang Xifeng, Daemen Joost, Qu Xinkai, Tu Shengxian
Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
J Cardiovasc Comput Tomogr. 2025 Jan-Feb;19(1):40-47. doi: 10.1016/j.jcct.2024.10.001. Epub 2024 Oct 23.
Murray-law based quantitative flow ratio, namely μFR, was recently validated to compute fractional flow reserve (FFR) from coronary angiographic images in the cath lab. Recently, the μFR algorithm was applied to coronary computed tomography angiography (CCTA) and a semi-automated computed μFR (CT-μFR) showed good accuracy in identifying flow-limiting coronary lesions prior to referral of patients to the cath lab. We aimed to evaluate the diagnostic accuracy of an artificial intelligence-powered method for fully automatic CCTA reconstruction and CT-μFR computation, using cath lab physiology as reference standard.
This was a post-hoc blinded analysis of the prospective CAREER trial (NCT04665817). Patients who underwent CCTA, coronary angiography including FFR within 30 days were included. Cath lab physiology standard for determining hemodynamically significant coronary stenosis was defined as FFR≤0.80, or μFR≤0.80 when FFR was not available.
Automatic CCTA reconstruction and CT-μFR computation was successfully achieved in 657 vessels from 242 patients. CT-μFR showed good correlation (r = 0.62, p < 0.001) and agreement (mean difference = -0.01 ± 0.10, p < 0.001) with cath lab physiology standard. Patient-level diagnostic accuracy for CT-μFR to identify patients with hemodynamically significant stenosis was 83.0 % (95%CI: 78.3%-87.8 %), with sensitivity, specificity, positive and negative predictive value, positive and negative likelihood ratio of 84.2 %, 81.9 %, 82.1 %, 84.0 %, 4.7 and 0.2, respectively. Average analysis time for CT-μFR was 1.60 ± 0.34 min per patient.
The fully automatic CT-μFR yielded high feasibility and good diagnostic performance in identifying patients with hemodynamically significant stenosis prior to referral of patients to the cath lab.
基于默里定律的定量血流比率,即μFR,最近被证实可在心脏导管室中从冠状动脉造影图像计算血流储备分数(FFR)。最近,μFR算法被应用于冠状动脉计算机断层扫描血管造影(CCTA),并且一种半自动计算的μFR(CT-μFR)在将患者转诊至心脏导管室之前识别限流性冠状动脉病变方面显示出良好的准确性。我们旨在以心脏导管室生理学作为参考标准,评估一种用于全自动CCTA重建和CT-μFR计算的人工智能驱动方法的诊断准确性。
这是对前瞻性CAREER试验(NCT04665817)的事后盲法分析。纳入在30天内接受CCTA、包括FFR的冠状动脉造影的患者。将确定血流动力学显著冠状动脉狭窄的心脏导管室生理学标准定义为FFR≤0.80,或在无法获得FFR时μFR≤0.80。
在来自242名患者的657支血管中成功实现了自动CCTA重建和CT-μFR计算。CT-μFR与心脏导管室生理学标准显示出良好的相关性(r = 0.62,p < 0.001)和一致性(平均差异 = -0.01 ± 0.10,p < 0.001)。CT-μFR识别血流动力学显著狭窄患者的患者水平诊断准确性为83.0%(95%CI:78.3%-87.8%),敏感性、特异性、阳性和阴性预测值、阳性和阴性似然比分别为84.2%?81.9%?82.1%?84.0%?4.7和0.2。CT-μFR的平均分析时间为每位患者1.60 ± 0.34分钟。
全自动CT-μFR在将患者转诊至心脏导管室之前识别血流动力学显著狭窄患者方面具有高可行性和良好的诊断性能。