文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

冠状动脉CT血管造影中的人工智能:改变动脉粥样硬化的诊断和风险分层

Artificial intelligence in coronary CT angiography: transforming the diagnosis and risk stratification of atherosclerosis.

作者信息

Irannejad Kyvan, Mafi Mana, Krishnan Srikanth, Budoff Matthew J

机构信息

The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA, 90502, USA.

The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA, 90502, USA.

出版信息

Int J Cardiovasc Imaging. 2025 Jun 27. doi: 10.1007/s10554-025-03440-8.


DOI:10.1007/s10554-025-03440-8
PMID:40576859
Abstract

Coronary CT Angiography (CCTA) is essential for assessing atherosclerosis and coronary artery disease, aiding in early detection, risk prediction, and clinical assessment. However, traditional CCTA interpretation is limited by observer variability, time inefficiency, and inconsistent plaque characterization. AI has emerged as a transformative tool, enhancing diagnostic accuracy, workflow efficiency, and risk prediction for major adverse cardiovascular events (MACE). Studies show that AI improves stenosis detection by 27%, inter-reader agreement by 30%, and reduces reporting times by 40%, thereby addressing key limitations of manual interpretation. Integrating AI with multimodal imaging (e.g., FFR-CT, PET-CT) further enhances ischemia detection by 28% and lesion classification by 35%, providing a more comprehensive cardiovascular evaluation. This review synthesizes recent advancements in CCTA-AI automation, risk stratification, and precision diagnostics while critically analyzing data quality, generalizability, ethics, and regulation challenges. Future directions, including real-time AI-assisted triage, cloud-based diagnostics, and AI-driven personalized medicine, are explored for their potential to revolutionize clinical workflows and optimize patient outcomes.

摘要

冠状动脉CT血管造影(CCTA)对于评估动脉粥样硬化和冠状动脉疾病至关重要,有助于早期检测、风险预测和临床评估。然而,传统的CCTA解读受到观察者变异性、时间效率低下和斑块特征不一致的限制。人工智能已成为一种变革性工具,提高了诊断准确性、工作流程效率以及对主要不良心血管事件(MACE)的风险预测。研究表明,人工智能将狭窄检测提高了27%,阅片者间一致性提高了30%,并将报告时间缩短了40%,从而解决了人工解读的关键局限性。将人工智能与多模态成像(如FFR-CT、PET-CT)相结合,可进一步将缺血检测提高28%,病变分类提高35%,提供更全面的心血管评估。本综述总结了CCTA人工智能自动化、风险分层及精准诊断方面的最新进展,同时批判性地分析了数据质量、普遍性、伦理及监管方面的挑战。探讨了包括实时人工智能辅助分诊、基于云的诊断及人工智能驱动的个性化医疗等未来发展方向,以了解其革新临床工作流程和优化患者治疗效果的潜力。

相似文献

[1]
Artificial intelligence in coronary CT angiography: transforming the diagnosis and risk stratification of atherosclerosis.

Int J Cardiovasc Imaging. 2025-6-27

[2]
AI-Quantitative CT Coronary Plaque Features Associate With a Higher Relative Risk in Women: CONFIRM2 Registry.

Circ Cardiovasc Imaging. 2025-6

[3]
First comparison between artificial intelligence-guided coronary computed tomography angiography versus single-photon emission computed tomography testing for ischemia in clinical practice.

Coron Artery Dis. 2025-8-1

[4]
Enhancing coronary artery plaque analysis via artificial intelligence-driven cardiovascular computed tomography.

Ther Adv Cardiovasc Dis. 2024

[5]
Cost-effectiveness of a novel AI technology to quantify coronary inflammation and cardiovascular risk in patients undergoing routine coronary computed tomography angiography.

Eur Heart J Qual Care Clin Outcomes. 2025-6-23

[6]
Artificial intelligence in coronary angiography: benchmarking the diagnostic accuracy of ChatGPT-4o against interventional cardiologists.

Open Heart. 2025-7-20

[7]
CT derived fractional flow reserve: Part 2 - Critical appraisal of the literature.

J Cardiovasc Comput Tomogr. 2025

[8]
CT derived fractional flow reserve: Part 1 - Comprehensive review of methodologies.

J Cardiovasc Comput Tomogr. 2025

[9]
Improved diagnostic accuracy of vessel-specific myocardial ischemia by coronary computed tomography angiography (CCTA).

J Cardiovasc Comput Tomogr. 2025

[10]
Coronary Atherosclerotic Plaque Burden Assessment by Computed Tomography and Its Clinical Implications.

Circ Cardiovasc Imaging. 2024-8

本文引用的文献

[1]
The RUCkus around plaque.

J Cardiovasc Comput Tomogr. 2025

[2]
Cohort profile: AI-driven national Platform for CCTA for clinicaL and industriaL applicatiOns (APOLLO).

BMJ Open. 2024-12-2

[3]
Diagnostic Performance of AI-enabled Plaque Quantification from Coronary CT Angiography Compared with Intravascular Ultrasound.

Radiol Cardiothorac Imaging. 2024-12

[4]
Assessing the need for coronary angiography in high-risk non-ST-elevation acute coronary syndrome patients using artificial intelligence and computed tomography.

Int J Cardiovasc Imaging. 2025-1

[5]
Automated computed tomography-derived fractional flow reserve model for diagnosing haemodynamically significant coronary artery disease: a prospective validation study.

Eur Heart J Imaging Methods Pract. 2024-9-30

[6]
Diagnostic performance of fully automatic coronary CT angiography-based quantitative flow ratio.

J Cardiovasc Comput Tomogr. 2025

[7]
Impactful Cardiac CT and MRI Articles from 2023.

Radiol Cardiothorac Imaging. 2024-10

[8]
Meta-analysis of deep learning approaches for automated coronary artery calcium scoring: Performance and clinical utility AI in CAC scoring: A meta-analysis: AI in CAC scoring: A meta-analysis.

Comput Biol Med. 2024-12

[9]
The role of artificial intelligence in coronary CT angiography.

Neth Heart J. 2024-11

[10]
Energy-integrating detector based ultra-high-resolution CT with deep learning reconstruction for the assessment of calcified lesions in coronary artery disease.

J Cardiovasc Comput Tomogr. 2024

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索