León-Rodríguez Ana, Grondona Jesús M, Marín-Wong Sonia, López-Aranda Manuel F, López-Ávalos María D
Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.
Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Bionand, Málaga, Spain.
Glia. 2025 Jan;73(1):175-195. doi: 10.1002/glia.24627. Epub 2024 Oct 24.
In acute neuroinflammation, microglia activate transiently, and return to a resting state later on. However, they may retain immune memory of such event, namely priming. Primed microglia are more sensitive to new stimuli and develop exacerbated responses, representing a risk factor for neurological disorders with an inflammatory component. Strategies to control the hyperactivation of microglia are, hence, of great interest. The receptor for colony stimulating factor 1 (CSF1R), expressed in myeloid cells, is essential for microglia viability, so its blockade with specific inhibitors (e.g. PLX5622) results in significant depletion of microglial population. Interestingly, upon inhibitor withdrawal, new naïve microglia repopulate the brain. Depletion-repopulation has been proposed as a strategy to reprogram microglia. However, substantial elimination of microglia is inadvisable in human therapy. To overcome such drawback, we aimed to reprogram long-term primed microglia by CSF1R partial inhibition. Microglial priming was induced in mice by acute neuroinflammation, provoked by intracerebroventricular injection of neuraminidase. After 3-weeks recovery, low-dose PLX5622 treatment was administrated for 12 days, followed by a withdrawal period of 7 weeks. Twelve hours before euthanasia, mice received a peripheral lipopolysaccharide (LPS) immune challenge, and the subsequent microglial inflammatory response was evaluated. PLX5622 provoked a 40%-50% decrease in microglial population, but basal levels were restored 7 weeks later. In the brain regions studied, hippocampus and hypothalamus, LPS induced enhanced microgliosis and inflammatory activation in neuraminidase-injected mice, while PLX5622 treatment prevented these changes. Our results suggest that PLX5622 used at low doses reverts microglial priming and, remarkably, prevents broad microglial depletion.
在急性神经炎症中,小胶质细胞会短暂激活,随后恢复到静息状态。然而,它们可能会保留对该事件的免疫记忆,即致敏。致敏的小胶质细胞对新刺激更敏感,并产生加剧的反应,这是具有炎症成分的神经疾病的一个危险因素。因此,控制小胶质细胞过度激活的策略备受关注。集落刺激因子1受体(CSF1R)在髓系细胞中表达,对小胶质细胞的存活至关重要,因此用特异性抑制剂(如PLX5622)阻断它会导致小胶质细胞数量显著减少。有趣的是,在停用抑制剂后,新的未致敏小胶质细胞会重新填充大脑。耗竭-再填充已被提议作为一种重编程小胶质细胞的策略。然而,在人类治疗中大量清除小胶质细胞是不可取的。为了克服这一缺点,我们旨在通过CSF1R部分抑制来重编程长期致敏的小胶质细胞。通过脑室内注射神经氨酸酶引发急性神经炎症,在小鼠中诱导小胶质细胞致敏。恢复3周后,给予低剂量PLX5622治疗12天,随后停药7周。在安乐死的前12小时,给小鼠进行外周脂多糖(LPS)免疫刺激,并评估随后的小胶质细胞炎症反应。PLX5622使小胶质细胞数量减少了40%-50%,但7周后基础水平恢复。在研究的脑区海马体和下丘脑,LPS在注射神经氨酸酶的小鼠中诱导了增强的小胶质细胞增生和炎症激活,而PLX5622治疗可防止这些变化。我们的结果表明,低剂量使用PLX5622可逆转小胶质细胞致敏,并且显著防止广泛的小胶质细胞耗竭。