Bruggeman D F, Rothenberg G, Garcia A C
Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands.
Nat Commun. 2024 Oct 24;15(1):9207. doi: 10.1038/s41467-024-53543-4.
Carbon capture and utilization (CCU) technologies present a promising solution for converting CO emissions into valuable products. Here we show how amines, such as monoethanolamine (MEA) and 2-amino-2-methyl-1-propanol (AMP), influence the electrochemical CO reduction process in an integrated CCU system. Using in situ spectroscopic techniques, we identify the key roles of carbamate bond strength, proton shuttling, and amine structure in dictating reaction pathways on copper (Cu) and lead (Pb) electrodes. Our findings demonstrate that on Cu electrodes, surface blockage by ammonium species impedes CO₂ reduction, whereas on Pb electrodes, proton shuttling enhances the production of hydrocarbon products. This study provides additional insights into optimizing CCU systems by tailoring the choice of amines and electrode materials, advancing the selective conversion of CO₂ into valuable chemicals.
碳捕获与利用(CCU)技术为将二氧化碳排放转化为有价值的产品提供了一个很有前景的解决方案。在此,我们展示了胺类物质,如单乙醇胺(MEA)和2-氨基-2-甲基-1-丙醇(AMP),如何在集成CCU系统中影响电化学二氧化碳还原过程。通过使用原位光谱技术,我们确定了氨基甲酸盐键强度、质子穿梭和胺结构在决定铜(Cu)和铅(Pb)电极上的反应途径中的关键作用。我们的研究结果表明,在铜电极上,铵类物质造成的表面堵塞会阻碍二氧化碳还原,而在铅电极上,质子穿梭会提高烃类产品的产量。这项研究通过定制胺类和电极材料的选择,为优化CCU系统提供了更多见解,推动了将二氧化碳选择性转化为有价值化学品的进程。