Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China.
State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
Nat Commun. 2024 Oct 24;15(1):9194. doi: 10.1038/s41467-024-53512-x.
Glycosylphosphatidylinositol (GPI) acyltransferase is crucial for the synthesis of GPI-anchored proteins. Targeting the fungal glycosylphosphatidylinositol acyltransferase GWT1 by manogepix is a promising antifungal strategy. However, the inhibitory mechanism of manogepix remains unclear. Here, we present cryo-EM structures of yeast GWT1 bound to the substrate (palmitoyl-CoA) and inhibitor (manogepix) at 3.3 Å and 3.5 Å, respectively. GWT1 adopts a unique fold with 13 transmembrane (TM) helixes. The palmitoyl-CoA inserts into the chamber among TM4, 5, 6, 7, and 12. The crucial residues (D145 and K155) located on the loop between TM4 and TM5 potentially bind to the GPI precursor, contributing to substrate recognition and catalysis, respectively. The antifungal drug, manogepix, occupies the hydrophobic cavity of the palmitoyl-CoA binding site, suggesting a competitive inhibitory mechanism. Structural analysis of resistance mutations elucidates the drug specificity and selectivity. These findings pave the way for the development of potent and selective antifungal drugs targeting GWT1.
糖基磷脂酰肌醇(GPI)酰基转移酶对于 GPI 锚定蛋白的合成至关重要。靶向真菌糖基磷脂酰肌醇酰基转移酶 GWT1 的 manogepix 是一种有前途的抗真菌策略。然而,manogepix 的抑制机制尚不清楚。在这里,我们分别以 3.3Å 和 3.5Å 的分辨率呈现了酵母 GWT1 与底物(棕榈酰-CoA)和抑制剂(manogepix)结合的冷冻电镜结构。GWT1 采用独特的折叠结构,具有 13 个跨膜(TM)螺旋。棕榈酰-CoA 插入 TM4、5、6、7 和 12 之间的腔室。位于 TM4 和 TM5 之间环上的关键残基(D145 和 K155)可能分别结合 GPI 前体,有助于底物识别和催化。抗真菌药物 manogepix 占据了棕榈酰-CoA 结合位点的疏水性腔,表明其具有竞争性抑制机制。耐药突变体的结构分析阐明了药物的特异性和选择性。这些发现为开发针对 GWT1 的有效且选择性的抗真菌药物铺平了道路。