Suppr超能文献

采用卡尔曼滤波器的统计数据融合技术的太阳能集成多传感器用于监测内陆湖水质

Solar powered integrated multi sensors to monitor inland lake water quality using statistical data fusion technique with Kalman filter.

作者信息

Priyanka E B, Thangavel S, Mohanasundaram R, Anand R

机构信息

Department of Mechatronics Engineering, Kongu Engineering College, Perundurai, Tamilnadu, 638060, India.

School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India.

出版信息

Sci Rep. 2024 Oct 24;14(1):25202. doi: 10.1038/s41598-024-76068-8.

Abstract

This study proposes a data-driven statistical model using multi sensor fusion and Kalman filtering for real-time water quality assessment in lakes. A recursive estimation technique, the Kalman Filter, is employed to handle uncertainties and enhance computational efficiency. The fusion process integrates data from sensors monitoring parameters like chlorophyll concentration, surface water elevation, temperature, and precipitation, producing Markov features to capture temporal transitions and environmental dynamics. Data synchronization and fusion are achieved through recursive KF methods, enabling real-time adaptive management in response to environmental fluctuations such as seasonal changes, precipitation (6-18%), and evaporation rates (1.2-11.9 mm/day). Over a 30-day evaluation period, the model accurately predicted chlorophyll concentrations, reaching 128 in mid-level inflow regions (3.6 m water elevation) compared to 86 in extreme inflow areas (5.5 m). The integration of Markov feature extraction and eigenvalue estimation enhanced prediction stability and sensitivity, with the KF maintaining computational efficiency at 7.8 ms per computation cycle. The model's accuracy was validated by achieving a residual error of less than 0.05 with minimal noise interference. Overall, the system provides a resilient and precise framework for real-time lake water quality assessment, capable of handling multi-parameter uncertainties and dynamic environmental changes, thereby supporting informed decision-making for aquatic ecosystem management.

摘要

本研究提出了一种基于数据驱动的统计模型,该模型利用多传感器融合和卡尔曼滤波对湖泊水质进行实时评估。采用递归估计技术卡尔曼滤波器来处理不确定性并提高计算效率。融合过程整合了来自监测叶绿素浓度、地表水水位、温度和降水量等参数的传感器的数据,生成马尔可夫特征以捕捉时间变化和环境动态。通过递归卡尔曼滤波方法实现数据同步和融合,从而能够针对季节性变化、降水量(6 - 18%)和蒸发率(1.2 - 11.9毫米/天)等环境波动进行实时自适应管理。在为期30天的评估期内,该模型准确预测了叶绿素浓度,在中等流入区域(水位3.6米)达到128,而在极端流入区域(5.5米)为86。马尔可夫特征提取和特征值估计的整合提高了预测的稳定性和灵敏度,卡尔曼滤波器在每个计算周期保持7.8毫秒的计算效率。该模型的准确性通过在最小噪声干扰下实现小于0.05的残差误差得到验证。总体而言,该系统为湖泊水质实时评估提供了一个弹性且精确的框架,能够处理多参数不确定性和动态环境变化,从而支持水生生态系统管理的明智决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d25/11502852/10270a7a9f09/41598_2024_76068_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验