Suppr超能文献

生理和转录组分析表明,包埋细菌的微胶囊的涂层可以增强小麦的耐盐性。

Physiological and transcriptomic analysis reveals the coating of microcapsules embedded with bacteria can enhance wheat salt tolerance.

机构信息

Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China.

Shandong Agri-tech Extension Center, Jinan, 250013, China.

出版信息

BMC Plant Biol. 2024 Oct 25;24(1):1004. doi: 10.1186/s12870-024-05718-w.

Abstract

Salt stress is one of the most important abiotic stress factors limiting crop production. Therefore, improving the stress resistance of seeds is very important for crop growth. Our previous studies have shown that using microcapsules encapsulating bacteria (Pontibacter actiniarum DSM 19842) as seed coating for wheat can alleviate salt stress. In this study, the genes and pathways involved in the response of wheat to salt stress were researched further. The results showed that compared with the control, the coating can improve osmotic stress and decrease oxidative damage by increasing the content of proline (29.1%), the activity of superoxide dismutase (SOD) (94.2%), peroxidase (POD) (45.7%) and catalase (CAT) (3.3%), reducing the content of hydrogen peroxide (HO) (39.8%) and malondialdehyde (MDA) (45.9%). In addition, ribonucleic acid (RNA) sequencing data showed that 7628 differentially expressed genes (DEGs) were identified, and 4426 DEGs up-regulated, 3202 down-regulated in the coated treatment. Many DEGs related to antioxidant enzymes were up-regulated, indicating that coating can promote the expression of antioxidant enzyme-related genes and alleviate oxidative damage under salt stress. The differential gene expression analysis demonstrated up-regulation of 27 genes and down-regulation of 20 genes. Transcription factor families, mostly belonging to bHLH, MYB, B3, NAC, and WRKY. Overall, this seed coating can promote the development of sustainable agriculture in saline soil.

摘要

盐胁迫是限制作物生产的最重要非生物胁迫因素之一。因此,提高种子的抗逆性对于作物生长非常重要。我们之前的研究表明,使用微胶囊包封细菌(Pontibacter actiniarum DSM 19842)作为小麦种子包衣可以缓解盐胁迫。在这项研究中,进一步研究了小麦对盐胁迫反应的相关基因和途径。结果表明,与对照相比,包衣通过增加脯氨酸(29.1%)、超氧化物歧化酶(SOD)(94.2%)、过氧化物酶(POD)(45.7%)和过氧化氢酶(CAT)(3.3%)的活性来改善渗透胁迫和减少氧化损伤,降低过氧化氢(HO)(39.8%)和丙二醛(MDA)(45.9%)的含量。此外,RNA 测序数据显示,鉴定出 7628 个差异表达基因(DEGs),其中 4426 个基因上调,3202 个基因下调。许多与抗氧化酶相关的 DEGs 上调,表明包衣可以促进抗氧化酶相关基因的表达,缓解盐胁迫下的氧化损伤。差异基因表达分析表明,有 27 个基因上调,20 个基因下调。转录因子家族大多属于 bHLH、MYB、B3、NAC 和 WRKY。总的来说,这种种子包衣可以促进盐渍土壤可持续农业的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验