Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
J Transl Med. 2024 Oct 24;22(1):964. doi: 10.1186/s12967-024-05762-y.
BACKGROUND: Immune checkpoint inhibitors (ICIs) have emerged as a novel and effective treatment strategy, yet their effectiveness is limited to a subset of patients. The gut microbiota, recognized as a promising anticancer adjuvant, is being increasingly suggested to augment the efficacy of ICIs. Despite this, the causal link between the gut microbiota and the success of immunotherapy is not well understood. This gap in knowledge has driven us to identify beneficial microbiota and explore the underlying molecular mechanisms. METHODS: Through 16S rDNA sequencing, we identified distinct gut microbiota in patients undergoing treatment with ICIs. Following this, we assessed the impact of probiotics on anti-PD-1 therapy in bladder cancer using mouse models, employing a multi-omics strategy. Subsequently, we uncovered the mechanisms through which Blautia-produced metabolites enhance antitumor immunity, utilizing untargeted metabolomics and a range of molecular biology techniques. RESULTS: In our research, the LEfSe analysis revealed a significant enrichment of the Blautia genus in the gut microbiota of patients who responded to immunotherapy. We discovered that the external addition of Blautia coccoides hampers tumor growth in a bladder cancer mouse model by enhancing the infiltration of CD8 T cells within the tumor microenvironment (TME). Further investigations through untargeted metabolomics and molecular biology experiments showed that oral administration of Blautia coccoides elevated trigonelline levels. This, in turn, suppresses the β-catenin expression both in vitro and in vivo, thereby augmenting the cancer-killing activity of CD8 T cells. CONCLUSIONS: This research provided valuable insights into enhancing the efficacy of PD-1 inhibitors in clinical settings. It was suggested that applying Blautia coccoides and its metabolic product, trigonelline, could serve as a synergistic treatment method with PD-1 inhibitors in clinical applications.
背景:免疫检查点抑制剂(ICIs)已成为一种新颖且有效的治疗策略,但它们的疗效仅限于一部分患者。肠道微生物群作为一种有前途的抗癌辅助剂,越来越被认为可以增强 ICI 的疗效。尽管如此,肠道微生物群与免疫疗法成功之间的因果关系仍未得到很好的理解。这一知识空白促使我们寻找有益的微生物群并探索潜在的分子机制。
方法:通过 16S rDNA 测序,我们在接受 ICI 治疗的患者中鉴定出了具有不同特征的肠道微生物群。在此之后,我们使用小鼠模型,采用多组学策略评估了益生菌对膀胱癌抗 PD-1 治疗的影响。随后,我们利用非靶向代谢组学和一系列分子生物学技术,揭示了 Blautia 产生的代谢物增强抗肿瘤免疫的机制。
结果:在我们的研究中,LEfSe 分析显示,对免疫治疗有反应的患者肠道微生物群中 Blautia 属明显富集。我们发现,外源性添加 Blautia coccoides 通过增强肿瘤微环境(TME)中 CD8 T 细胞的浸润,阻碍了膀胱癌小鼠模型中的肿瘤生长。通过非靶向代谢组学和分子生物学实验的进一步研究表明,口服 Blautia coccoides 可提高瓜氨酸水平。这反过来又抑制了体外和体内的 β-连环蛋白表达,从而增强了 CD8 T 细胞的抗癌活性。
结论:这项研究为增强 PD-1 抑制剂在临床环境中的疗效提供了有价值的见解。研究表明,应用 Blautia coccoides 及其代谢产物瓜氨酸可能成为 PD-1 抑制剂在临床应用中的协同治疗方法。
Front Immunol. 2024
Thorac Cancer. 2024-5
Biomedicines. 2025-4-21
Chin J Cancer Res. 2024-12-30
J Hematol Oncol. 2024-5-14
Cell Rep Med. 2024-4-16