Vaizoglu Refika Dilara, Erdem Beril, Gul Mehmet, Acar Ceren, Ozdemirel Huseyin Ozgur, Saglar Ozer Emel, Mergen Hatice
Department of Biology, Universities District, Hacettepe University, Faculty of Science, Molecular Biology Section, Beytepe Campus, Cankaya/Ankara 06800, Turkey.
Inonu University, Faculty of Medicine, Basic Medical Sciences, Histology and Embryology Section, Malatya 44280, Turkey.
J Clin Endocrinol Metab. 2025 May 19;110(6):1577-1586. doi: 10.1210/clinem/dgae749.
Aggregations of unfolded or misfolded proteins, both inside and outside cells, are implicated in numerous diseases, collectively known as amyloidosis. Particularly, autosomal dominant neurohypophyseal diabetes insipidus (ADNDI) is a rare disease caused by mutations in the AVP-NPII gene, leading to the inability to secrete arginine vasopressin. These misfolded proteins accumulate within the endoplasmic reticulum (ER), causing cellular dysfunction.
This study aimed to investigate the formation of amyloid-like aggregates within the cell resulting from misfolded mutant precursor proteins, which induce disulfide-linked oligomers due to the G45C, 207_209delGGC, G88V, C98X, C104F, E108D-1, E108D-2 and R122H mutations identified by our group in the AVP-NPII gene of ADNDI patients.
Deglycosylation studies were performed to analyze the glycosylation patterns of mutant protein precursors. The involvement of these precursors in the ER-related degradation pathway was studied by conducting protease inhibition experiments. Disulfide-linked oligomer analysis determined the oligomerization status of the mutant precursors. Immunofluorescence and electron microscopy studies provided evidence of aggregate structures in the ER lumen. In vitro studies involved bacterial expression and fibril formation in Escherichia coli (E. coli).
Our findings demonstrated that the N-glycan structure of mutant precursors remains intact within the ER. Protease inhibition experiments indicated the involvement of these precursors in the ER-related degradation pathway. Disulfide-linked oligomer analysis revealed homo-oligomer structures in mutations. Immunofluorescence and electron microscopy studies confirmed the presence of aggregate structures in the ER lumen. In vitro studies showed that mutant precursors could form fibril structures in E. coli.
Our study may support the idea that ADNDI belongs to the group of neurodegenerative diseases due to the formation of fibrillar amyloid aggregates in the cell.
细胞内外未折叠或错误折叠蛋白质的聚集与多种疾病有关,统称为淀粉样变性。特别是,常染色体显性遗传性神经垂体性尿崩症(ADNDI)是一种由抗利尿激素 - 神经垂体素II(AVP - NPII)基因突变引起的罕见疾病,导致无法分泌精氨酸加压素。这些错误折叠的蛋白质在内质网(ER)中积累,导致细胞功能障碍。
本研究旨在调查由错误折叠的突变前体蛋白在细胞内形成的淀粉样聚集体,这些突变前体蛋白由于我们团队在ADNDI患者的AVP - NPII基因中鉴定出的G45C、207_209delGGC、G88V、C98X、C104F、E108D - 1、E108D - 2和R122H突变而诱导二硫键连接的寡聚体。
进行去糖基化研究以分析突变蛋白前体的糖基化模式。通过进行蛋白酶抑制实验研究这些前体在ER相关降解途径中的参与情况。二硫键连接的寡聚体分析确定突变前体的寡聚化状态。免疫荧光和电子显微镜研究提供了ER腔内聚集体结构的证据。体外研究涉及在大肠杆菌(E. coli)中的细菌表达和纤维形成。
我们的研究结果表明,突变前体的N - 聚糖结构在内质网中保持完整。蛋白酶抑制实验表明这些前体参与了ER相关降解途径。二硫键连接的寡聚体分析揭示了突变中的同型寡聚体结构。免疫荧光和电子显微镜研究证实了ER腔内聚集体结构的存在。体外研究表明突变前体可以在大肠杆菌中形成纤维结构。
我们的研究可能支持这样一种观点,即由于细胞内形成纤维状淀粉样聚集体,ADNDI属于神经退行性疾病类别。